Skip to main content
Log in

Thermus parvatiensis RLT sp. nov., Isolated from a Hot Water Spring, Located Atop the Himalayan Ranges at Manikaran, India

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

A Gram negative, yellow pigmented, rod shaped bacterium designated as RLT was isolated from a hot water spring (90–98 °C) located at Manikaran in Northern India. The isolate grows at 60–80 °C (optimum, 70 °C) and at pH 7.0–9.0 (optimum pH 7.2). Phylogenetic analysis of 16S rRNA gene sequences and levels of DNA–DNA relatedness together indicate that the new isolate represents a novel species of the genus Thermus with closest affinity to Thermus thermophilus HB8T (99.5 %) followed by Thermus arciformis (96.4 %). A comparative analysis of partial sequences of housekeeping genes (HKG) further revealed that strain RLT is a novel species belonging to the genus Thermus. The melting G+C content of strain RLT was calculated as 68.7 mol%. The DNA–DNA relatedness value of strain RLT with its nearest neighbours (>97 %) was found to be less than 70 % indicating that strain RLT represents a novel species of the genus Thermus. MK-8 was the predominant respiratory quinone. The presence of characteristic phospholipid and glycolipid further confirmed that strain RLT belongs to the genus Thermus. The predominant fatty acids of strain RLT were iso-C17:0 (23.67 %) and iso-C15:0 (24.50 %). The results obtained after DNA–DNA hybridization, biochemical and physiological tests clearly distinguished strain RLT from its closely related species. Thus, strain RLT represents a novel species of the genus Thermus for which the name Thermus parvatiensis is proposed (=DSM 21745T= MTCC 8932T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98:289–297

    PubMed Central  CAS  PubMed  Google Scholar 

  2. da Costa MS, Rainey FA, Nobre MF (2006) The genus Thermus and relatives. In: The prokaryotes: a handbook on the biology of bacteria, 3rd edn, vol 7. Springer, New York, pp 797–812

  3. Hudson JA, MorganHW Daniel RM (1987) Thermus filiformis sp. nov., a filamentous caldoactive bacterium. Int J Syst Bacteriol 37:431–436. doi:10.1099/00207713-37-4-431

    Article  Google Scholar 

  4. Kristjansson JK, Hjorleifsdottir S, Marteinsson V, Alfredsson GA (1994) Thermus scotoductus sp. nov., a pigment-producing thermophilic bacterium from hot tap water in Iceland and including Thermus sp. X-1. Syst Appl Microbiol 17:44–50. doi:10.1016/S0723-2020(11)80030-5

    Article  Google Scholar 

  5. Oshima T, Imahori K (1974) Description of Thermus thermophilus (Yoshida and Oshima) comb. nov., a nonsporulating thermophilic bacteriumfrom a Japanese thermal spa. Int J Syst Bacteriol 24:102–112. doi:10.1099/00207713-24-1-102

    Article  CAS  Google Scholar 

  6. Williams RAD, Smith KE, Welch SG, Micallef J (1996) Thermus oshimai sp. nov., isolated from hot springs in Portugal, Iceland, and the Azores and comment on the concept of a limited geographical distribution of Thermus species. Int J Syst Bacteriol 46:403–408. doi:10.1099/00207713-46-2-403

    Article  CAS  PubMed  Google Scholar 

  7. Williams RAD, Smith KE, Welch SG, Micallef J, Sharp RJ (1995) DNA relatedness of Thermus strains, description of Thermus brockianus sp. nov., and proposal to reestablish Thermus thermophilus (Oshima and Imahori). Int J Syst Bacteriol 45:495–499. doi:10.1099/00207713-45-3-495

    Article  CAS  PubMed  Google Scholar 

  8. Chung AP, Rainey FA, Valente M, Nobre MF, da Costa MS (2000) Thermus igniterrae sp. nov. and Thermus antranikianii sp. nov., two new species from Iceland. Int J Syst Evol Microbiol 50:209–217. doi:10.1099/00207713-50-1-209

    Article  CAS  PubMed  Google Scholar 

  9. Kurosawa N, Itoh YH, Itoh T (2005) Thermus kawarayensis sp. nov., a new member of the genus Thermus, isolated from Japanese hot springs. Extremophiles 9:81–84. doi:10.1007/s00792-004-0419-y

    Article  PubMed  Google Scholar 

  10. Bjornsdottir SH, Petursdottir SK, Hreggvidsson GO, Skirnisdottir S, Hjorleifsdottir S, Arnfinnsson J, Kristjansson JK (2009) Thermus islandicus sp. nov., a mixotrophic sulfuroxidizing bacterium isolated from the Torfajokull geothermal area. Int J Syst Evol Microbiol 59:2962–2966. doi:10.1099/ijs.0.007013-0

    Article  CAS  PubMed  Google Scholar 

  11. Zhang XQ, Ying Y, Ye Y, Xu XW, Zhu XF, Wu M (2010) Thermus arciformis sp. nov., a thermophilic species from a geothermal area. Int J Syst Evol Microbiol 60:834–839. doi:10.1099/ijs.0.007690-0

    Article  CAS  PubMed  Google Scholar 

  12. Vajna B, Kanizsai S, Kéki Z, Márialigeti K, Schumann P, Tóth EM (2012) Thermus composti sp. nov., isolated from oyster mushroom compost. Int J Syst Evol Microbiol 62:1486–1490. doi:10.1099/ijs.0.030866-0

    Article  CAS  PubMed  Google Scholar 

  13. Ming H, Yin YR, Li S, Nie GX, Yu TT, Zhou EM, Liu L, Dong L, Li WJ (2014) Thermus caliditerrae sp. nov., a novel thermophilic species isolated from a geothermal area. Int J Syst Evol Microbiol 64:650–656. doi:10.1099/ijs.0.056838-0

    Article  CAS  PubMed  Google Scholar 

  14. Prakash O, Verma M, Sharma P, Kumar M, Kumari K, Singh A, Kumari H, Jit S, Gupta SK, Khanna M, Lal R (2007) Polyphasic approach of bacterial classification—an overview of recent advances. Indian J Microbiol 47:98–108. doi:10.1007/s12088-007-0022-x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  16. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721. doi:10.1099/ijs.0.038075-0

    Article  CAS  PubMed  Google Scholar 

  17. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi:10.1093/nar/25.24.4876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Jukes T, Cantor CR (1969) In: Munro HN (ed) Evolution of protein molecules in mammalian protein metabolism. Academic Press, New York, pp 21–132

    Chapter  Google Scholar 

  20. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  21. Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycan based on 2,4-diamino butyric acid (DAB). J Appl Bacteriol 48:459–470. doi:10.1111/j.1365-2672.1980.tb01036.x

    Article  CAS  Google Scholar 

  22. Miller LT (1982) Single derivatization method for the routine analysis of whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Kuykenkendall LD, Roy MA, O’Neil JJ, Devine TE (1988) Fatty acids, antibiotics resistance and deoxyribonucleic acid homology groups of Bradorhizobium japonicum. Int J Syst Bacteriol 38:358–361. doi:10.1099/00207713-38-4-358

    Article  Google Scholar 

  24. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. doi:10.1139/o59-099

    Article  CAS  PubMed  Google Scholar 

  25. McCarthy AJ, Cross T (1984) A taxonomic study of Thermomonospora and other monosporicactinomycetes. J Gen Microbiol 130:5–25. doi:10.1099/00221287-130-1-5

    Google Scholar 

  26. Arden-Jones MP, McCarthy AJ, Cross T (1979) Taxonomic and serological studies on Micropolyspora faeni and Micropolyspora strains from soil bearing the specific epithet rectivirgula. J Gen Microbiol 115:343–354. doi:10.1099/00221287-115-2-343

    Article  Google Scholar 

  27. Dwivedi V, Sangwan N, Nigam A, Garg N, Niharika N, Khurana P, Khurana JP, Lal R (2012) Draft genome sequence of Thermus sp. RL isolated from hot water spring located atop the Himalayan Ranges at Manikaran, India. J Bacteriol 194:3534. doi:10.1128/JB.00604-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218. doi:10.1016/S0022-2836(61)80047-8

    Article  CAS  Google Scholar 

  29. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Biochemistry 12:133–142. doi:10.1111/j.1432-1033.1970.tb00830.x

    Google Scholar 

  30. Kumar M, Verma M, Lal R (2008) Devosia chinhatensis sp. nov., isolated from Hexachlorocyclohexane (HCH) dump site in India. Int J Syst Evol Microbiol 58:861–865. doi:10.1099/ijs.0.65574-0

    Article  CAS  PubMed  Google Scholar 

  31. Tourova TP, Antonov AS (1987) Identification of microorganisms by rapid DNA–DNA hybridization. Methods Microbiol 19:333–355

    Article  Google Scholar 

  32. Martens M, Dawyndt P, Coopman R, Gillis M, De Vos P, Willems A (2008) Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 58:200–214. doi:10.1099/ijs.0.65392-0

    Article  CAS  PubMed  Google Scholar 

  33. Fox GE, Wisotzkey JD, Jurtshuk P Jr (1992) How close is close: 16S ribosomal RNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170. doi:10.1099/00207713-42-1-166

    Article  CAS  PubMed  Google Scholar 

  34. Jaspers E, Overmann J (2004) Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl Environ Microbiol 70:4831–4839. doi:10.1128/AEM.70.8.4831-4839.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Sullivan JT, Eardly BD, van Berkum P, Ronson CW (1996) Four unnamed species of nonsymbiotic rhizobia isolated from the rhizosphere of Lotus corniculatus. Appl Environ Microbiol 62:2818–2825

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Wayne LG, Brenner DJ, Colwell RR et al (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematic. Int J Syst Evol Microbiol 37:463–464. doi:10.1099/00207713-37-4-463

    Google Scholar 

Download references

Acknowledgments

This research was supported by funds from Department of Biotechnology (DBT), National Bureau of Agriculturally Important Microorganisms (NBAIM, ICAR), DU/DST-PURSE Grant, Government of India. KK, VD, SKG, RK, CT, PL, NN, AKS, RK, AN, NG gratefully acknowledge University Grants Commission (UGC), Council for Scientific and Industrial Research (CSIR), Department of Biotechnology (DBT) and Indian Council for Agricultural Research (ICAR) for providing research fellowships. We thank SAIF-DST (Sophisticated Analytical instrumentation Facility, Department of Science and Technology, Department of Anatomy, AIIMS) for providing the transmission electron facility. We also thank Dr. J. P. Euzeby (Ecole Nationale Veterinaire, Toulouse, France) for etymological advice.

Conflict of interest

The authors state that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rup Lal.

Additional information

Vatsala Dwivedi and Kirti Kumari have contributed equally to this work.

Sequence Deposited The GenBank accession number for 16S rRNA gene sequence of strain RLT (=MTCC 8932T= DSM 21745T) is EU017402.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1066 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, V., Kumari, K., Gupta, S.K. et al. Thermus parvatiensis RLT sp. nov., Isolated from a Hot Water Spring, Located Atop the Himalayan Ranges at Manikaran, India. Indian J Microbiol 55, 357–365 (2015). https://doi.org/10.1007/s12088-015-0538-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-015-0538-4

Keywords

Navigation