Skip to main content
Log in

Functional Identification of OphR, an IclR Family Transcriptional Regulator Involved in the Regulation of the Phthalate Catabolic Operon in Rhodococcus sp. Strain DK17

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

A putative gene for a transcriptional regulator (ophR) was detected near each copy of the duplicated phthalate-degrading operon of Rhodococcus sp. DK17. Sequence analysis and molecular modeling indicate that OphR belongs to the IclR family of transcriptional regulators and possesses the N-terminal DNA-binding and C-terminal effector-binding domains. DNA-binding assays demonstrate that OphR regulates the phthalate operon by binding to the ophA1-ophR intergenic region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Moody JD, Freeman JP, Doerge DR, Cerniglia CE (2001) Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 67:1476–1483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Eaton RW (2001) Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B. J Bacteriol 183:3689–3703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Habe H, Miyakoshi M, Chung J, Kasuga K, Yoshida T, Nojiri H, Omori T (2003) Phthalate catabolic gene cluster is linked to the angular dioxygenase gene in Terrabacter sp. strain DBF63. Appl Microbiol Biotechnol 61:44–54

    Article  CAS  PubMed  Google Scholar 

  4. Stingley RL, Brezna B, Khan AA, Cerniglia CE (2004) Novel organization of genes in a phthalate degradation operon of Mycobacterium vanbaalenii PYR-1. Microbiology 150:3749–3761

    Article  CAS  PubMed  Google Scholar 

  5. Nomura Y, Nakagawa M, Ogawa N, Harashima S, Oshima Y (1992) Genes in PHT plasmid encoding the initial degradation pathway of phthalate in Pseudomonas putida. J Ferment Bioeng 74:333–344

    Article  CAS  Google Scholar 

  6. Choi KY, Kim D, Sul WJ, Chae J-C, Zylstra GJ, Kim YM, Kim E (2005) Molecular and biochemical analysis of phthalate and terephthalate degradation by Rhodococcus sp. strain DK17. FEMS Microbiol Lett 252:207–213

    Article  CAS  PubMed  Google Scholar 

  7. Kim D, Yoo M, Choi KY, Kang BS, Kim TK, Hong SG, Zylstra GJ, Kim E (2011) Differential degradation of bicyclics with aromatic and alicyclic rings by Rhodococcus sp. strain DK17. Appl Environ Microbiol 77:8280–8287. doi:10.1128/AEM.06359-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Yoo M, Kim D, Choi KY, Chae J-C, Zylstra GJ, Kim E (2012) Draft genome sequence and comparative analysis of the superb aromatic-hydrocarbon degrader Rhodococcus sp. strain DK17. J Bacteriol 194:4440. doi:10.1128/JB.00844-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Choi KY, Kim D, Chae J-C, Zylstra GJ, Kim E (2007) Requirement of duplicated operons for maximal metabolism of phthalate by Rhodococcus sp. strain DK17. Biochem Biophys Res Commun 357:766–771

    Article  CAS  PubMed  Google Scholar 

  10. Choi KY, Zylstra GJ, Kim E (2007) Benzoate catabolite repression of the phthalate degradation pathway in Rhodococcus sp. strain DK17. Appl Environ Microbiol 73:1370–1374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kim D, Kim Y-S, Kim S-K, Kim SW, Zylstra GJ, Kim YM, Kim E (2002) Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. strain DK17. Appl Environ Microbiol 68:3270–3278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Krell T, Molina-Henares AJ, Ramos JL (2006) The IclR family of transcriptional activators and repressors can be defined by a single profile. Protein Sci 15:1207–1213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Molina-Henares AJ, Krell T, Guazzaroni ME, Segura A, Ramos JL (2006) Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. FEMS Microbiol Rev 30:157–186

    Article  CAS  PubMed  Google Scholar 

  14. Fillet S, Krell T, Morel B, Lu D, Zhang X, Ramos JL (2011) Intracellular signal transmission in a tetrameric repressor of the IclR family. Proc Natl Acad Sci USA 108:15372–15377. doi:10.1073/pnas.1018894108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a grant from the Ministry of Oceans and Fisheries, Korea to the Korea Polar Research Institute (Project PM13030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eungbin Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, K.Y., Kang, B.S., Nam, M.H. et al. Functional Identification of OphR, an IclR Family Transcriptional Regulator Involved in the Regulation of the Phthalate Catabolic Operon in Rhodococcus sp. Strain DK17. Indian J Microbiol 55, 313–318 (2015). https://doi.org/10.1007/s12088-015-0529-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-015-0529-5

Keywords

Navigation