Skip to main content

Advertisement

Log in

Trichoderma–Plant–Pathogen Interactions: Advances in Genetics of Biological Control

  • Review Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Trichoderma spp. are widely used in agriculture as biofungicides. Induction of plant defense and mycoparasitism (killing of one fungus by another) are considered to be the most important mechanisms of Trichoderma-mediated biological control. Understanding these mechanisms at the molecular level would help in developing strains with superior biocontrol properties. In this article, we review our current understanding of the genetics of interactions of Trichoderma with plants and plant pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Verma M, Brar SK, Tyagi RD, Surampalli RY, Val’ero JR (2007) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37:1–20

    Article  Google Scholar 

  2. Singh HB, Singh BN, Singh SP, Singh SR, Sarma BK (2009) Biological control of plant diseases: current status and future prospects. In: Johri JK (ed) Recent advances in biopesticides: biotechnological applications. New India Pub, New Delhi, p 322

    Google Scholar 

  3. Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA et al (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40

    Article  PubMed  CAS  Google Scholar 

  4. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  PubMed  CAS  Google Scholar 

  5. Shoresh M, Harman GE (2008) The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol 147:2147–2163

    Article  PubMed  CAS  Google Scholar 

  6. Vargas WA, Mandawe JC, Kenerley CM (2009) Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol 151:792–808

    Article  PubMed  CAS  Google Scholar 

  7. Vargas WA, Crutcher FK, Kenerley CM (2011) Functional characterization of a plant-like sucrose transporter from the beneficial fungus Trichoderma virens. Regulation of the symbiotic association with plants by sucrose metabolism inside the fungal cells. New Phytol 189:777–789

    Article  PubMed  CAS  Google Scholar 

  8. Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: from, omics to the field. Annu Rev Phytopathol 48:234–246

    Article  Google Scholar 

  9. Hermosa R, Woo SL, Lorito M, Monte E (2010) Proteomic approaches to understand Trichoderma biocontrol mechanisms and plant interactions. Curr Proteomics 7:298–305

    Article  CAS  Google Scholar 

  10. Brotman Y, Lisec J, Meret M, Chet I, Willmitzer L, Viterbo A (2012) Transcript and metabolite analysis of the Trichoderma induced systemic resistance response to Pseudomonas syringe in Arabidopsis thaliana. Microbiology 158:139–146

    Article  PubMed  CAS  Google Scholar 

  11. Morán-Diez E, Rubio B, Domínguez S, Hermosa R, Monte E, Nicolás C (2012) Transcriptomic response of Arabidopsis thaliana after 24 h incubation with the biocontrol fungus Trichoderma harzianum. J Plant Physiol 169:614–620

    Article  PubMed  Google Scholar 

  12. Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592

    Article  PubMed  CAS  Google Scholar 

  13. Viterbo A, Landau U, Kim S, Chernin L, Chet I (2010) Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett 305:42–48

    Article  PubMed  CAS  Google Scholar 

  14. Viterbo A, Chet I (2006) TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization. Mol Plant Pathol 7:249–258

    Article  PubMed  CAS  Google Scholar 

  15. Samolski I, Rincon AM, Pinzon LM, Viterbo A, Monte E (2012) The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology 158:129–138

    Article  PubMed  CAS  Google Scholar 

  16. Brotman Y, Briff E, Viterbo A, Chet I (2008) Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol 147:779–789

    Article  PubMed  CAS  Google Scholar 

  17. Morán-Diez E, Hermosa R, Ambrosino P, Cardoza RE, Gutiérrez S, Lorito M, Monte E (2009) The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum–plant beneficial interaction. Mol Plant Microbe Interact 22:1021–1031

    Article  PubMed  Google Scholar 

  18. Masunaka A, Hyakumachi M, Takenaka S (2011) Plant growth-promoting fungus Trichoderma koningii suppresses isoflavonoid phytoalexin vestitol production for colonization on/in the roots of Lotus japonicus. Microbes Environ 26:128–134

    Article  PubMed  Google Scholar 

  19. Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  PubMed  CAS  Google Scholar 

  20. Segarra G, Casanova E, Bellido D, Odena MA, Oliveira E, Trillas I (2007) Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7:3943–3952

    Article  PubMed  CAS  Google Scholar 

  21. Contreras-Cornejo HA, Macias-Rodriguez L, Beltran-Pena E, Herrera-Estrella A, Lopez-Bucio J (2011) Trichoderma-induced plant immunity likely involves both hormonal and camalexin dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signal Behav 6:1554–1563

    Article  PubMed  CAS  Google Scholar 

  22. Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A, Casas-Flores S (2011) Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol 131:15–26

    Article  CAS  Google Scholar 

  23. Yoshioka Y, Ichikawa H, Naznin HA, Kogure A, Hyakumachi M (2012) Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seedborne diseases of rice. Pest Manag Sci 68:60–66

    Article  PubMed  CAS  Google Scholar 

  24. Viterbo A, Harel M, Horwitz BA, Chet I, Mukherjee PK (2005) Trichoderma mitogen-activated protein kinase signaling is involved in induction of plant systemic resistance. Appl Environ Microbiol 71:6241–6246

    Article  PubMed  CAS  Google Scholar 

  25. Shoresh M, Gal-On A, Leibman D, Chet I (2006) Characterization of a mitogen-activated protein kinase gene from cucumber required for Trichoderma-conferred plant resistance. Plant Physiol 142:1169–1179

    Article  PubMed  CAS  Google Scholar 

  26. Leitgeb B, Szekeres A, Manczinger L, Vagvolgyl C, Kredics L (2007) The history of alamethicin: a review of most extensively studied peptaibol. Chem Biodivers 4:1027–1051

    Article  PubMed  CAS  Google Scholar 

  27. Viterbo A, Wiest A, Brotman Y, Chet I, Kenerley CM (2007) The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol Plant Pathol 8:737–746

    Article  PubMed  CAS  Google Scholar 

  28. Luo Y, Zhang DD, Dong XW, Zhao PB, Chen LL, Song XY, Wang XJ, Chen XL, Shi M, Zhang YZ (2010) Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against tobacco mosaic virus. FEMS Micro Lett 313:120–126

    Article  CAS  Google Scholar 

  29. Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma—the genomics of opportunistic success. Nat Rev Microbiol 9:749–759

    Article  PubMed  CAS  Google Scholar 

  30. Mukherjee PK, Buensanteai N, Moran-Diez ME, Druzhinina IS, Kenerley CM (2012) Functional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in induced systemic resistance response in maize. Microbiology 158:155–165

    Article  PubMed  CAS  Google Scholar 

  31. Djonović S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant Microbe Interact 19:838–853

    Article  PubMed  Google Scholar 

  32. Seidl V, Marchetti M, Schandl R, Allmaier G, Kubicek CP (2006) EPL1, the major secreted protein of Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family comprising plant defense response elicitors. FEBS J 273:4346–4359

    Article  PubMed  CAS  Google Scholar 

  33. Djonovic S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM (2007) A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145:875–889

    Article  PubMed  CAS  Google Scholar 

  34. Vargas WA, Djonović S, Sukno SA, Kenerley CM (2008) Dimerization controls the activity of fungal elicitors that trigger systemic resistance in plants. J Biol Chem 283:19804–19815

    Article  PubMed  CAS  Google Scholar 

  35. de Oliveira AL, Gallo M, Pazzagli L, Benedetti CE, Cappugi G, Scala A, Pantera B, Spisni A, Pertinhez TA, Cicero DO (2011) The structure of the elicitor cerato-platanin (CP), the first member of the CP fungal protein family, reveals a double ψβ-barrel fold and carbohydrate binding. J Biol Chem 286:17560–17568

    Article  PubMed  Google Scholar 

  36. Zhang CL, Liu SP, Lin FC, Kubicek CP, Druzhinina IS (2007) Trichoderma taxi sp. nov., an endophytic fungus from Chinese yew Taxus mairei. FEMS Microbiol Lett 270:90–96

    Article  PubMed  CAS  Google Scholar 

  37. Hanada RE, deJorge SouzaT, Pomella AW, Hebbar KP, Pereira JO, Ismaiel A, Samuels GJ (2008) Trichoderma martiale sp. nov., a new endophyte from sapwood of Theobroma cacao with a potential for biological control. Mycol Res 112:1335–1343

    Article  PubMed  CAS  Google Scholar 

  38. Hanada RE, Pomella AW, Costa HS, Bezerra JL, Loguercio LL, Pereira JO (2010) Endophytic fungal diversity in Theobroma cacao (cacao) and T. grandiflorum (cupuaçu) trees and their potential for growth promotion and biocontrol of black-pod disease. Fungal Biol 114:901–910

    Article  PubMed  Google Scholar 

  39. Samuels GJ, Ismaiel A (2009) Trichoderma evansii and T. lieckfeldtiae: two new T. hamatum-like species. Mycologia 101:142–156

    Article  PubMed  CAS  Google Scholar 

  40. Chaverri P, Gazis RO, Samuels GJ (2011) Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and H. guianensis from the Amazon basin. Mycologia 103:139–151

    Article  PubMed  Google Scholar 

  41. Bailey BA, Bae H, Strem MD, Roberts DP, Thomas SE, Crozier J, Samuels GJ, Choi IY, Holmes KA (2006) Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma spp. Planta 224:1449–1464

    Article  PubMed  CAS  Google Scholar 

  42. Bae H, Sicher RC, Kim MS, Kim SH, Strem MD, MeInice RL, Bailey BA (2009) The beneficial endophyte Trichoderma hamatum isolate DS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60:3279–3295

    Article  PubMed  CAS  Google Scholar 

  43. Bailey BA, Stream MD, Wood D (2009) Trichoderma species form endophytic associations within Theobroma cacao trichomes. Mycol Res 113:1365–1376

    Article  PubMed  Google Scholar 

  44. Sharon E, Chet I, Spiegel Y (2011) Trichoderma as biological control agent. In: Davies K, Spiegel Y (eds) Biological control of plant parasitic nematodes: building coherence between microbial ecology and molecular mechanisms. Springer, Berlin, pp 183–202

    Google Scholar 

  45. Omann MR, Lehner S, Escobar Rodriguez C, Brunner K, Zeilinger S (2012) The seven-transmembrane receptor Gpr1 governs processes relevant for the antagonistic interaction of Trichoderma atroviride with its host. Microbiology 158:107–118

    Article  PubMed  CAS  Google Scholar 

  46. Zeilinger S, Reithner B, Scala V, Peiss I, Lorito M, Mach RL (2005) Signal transduction by Tga3, a novel G protein alpha subunit of Trichoderma atroviride. Appl Environ Microbiol 71:1591–1597

    Article  PubMed  CAS  Google Scholar 

  47. Mukherjee M, Mukherjee PK, Kale SP (2007) cAMP signalling is involved in growth, germination, mycoparasitism and secondary metabolism in Trichoderma virens. Microbiology 153:1734–1742

    Article  PubMed  CAS  Google Scholar 

  48. Schmoll M (2008) The information highways of a biotechnological workhorse—signal transduction in Hypocrea jecorina. BMC Genomics 9:430

    Article  PubMed  Google Scholar 

  49. Reithner B, Schuhmacher R, Stoppacher N, Pucher M, Brunner K, Zeilinger S (2007) Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection. Fungal Genet Biol 44:1123–1133

    Article  PubMed  CAS  Google Scholar 

  50. Kumar A, Scher K, Mukherjee M, Pardovitz-Kedmi E, Sible GV, Singh US, Kale SP, Mukherjee PK, Horwitz BA (2010) Overlapping and distinct functions of two Trichoderma virens MAP kinases in cell-wall integrity, antagonistic properties and repression of conidiation. Biochem Biophys Res Commun 398:765–770

    Article  PubMed  CAS  Google Scholar 

  51. Mukherjee PK, Kenerley CM (2010) Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1. Appl Environ Microbiol 76:2345–2352

    Article  PubMed  CAS  Google Scholar 

  52. Djonović S, Pozo MJ, Kenerley CM (2006) Tvbgn3, a beta-1,6-glucanase from the biocontrol fungus Trichoderma virens, is involved in mycoparasitism and control of Pythium ultimum. Appl Environ Microbiol 72:7661–7670

    Article  PubMed  Google Scholar 

  53. Djonović S, Vittone G, Mendoza-Herrera A, Kenerley CM (2007) Enhanced biocontrol activity of Trichoderma virens transformants constitutively coexpressing beta-1,3- and beta-1,6-glucanase genes. Mol Plant Pathol 8:469–480

    Article  PubMed  Google Scholar 

  54. Viterbo A, Horwotz BA (2010) Mycoparasitism. In: Borkovich KA, Ebbole DJ (eds) Cellular and molecular biology of filamentous fungi. ASM Press, Herndon, pp 676–694

    Google Scholar 

  55. Catalano V, Vergara M, Hauzenberger JR, Seiboth B, Sarrocco S, Vannacci G, Kubicek CP, Seidl-Seiboth V (2011) Use of a non-homologous end-joining-deficient strain (delta-ku70) of the biocontrol fungus Trichoderma virens to investigate the function of the laccase gene lcc1 in sclerotia degradation. Curr Genet 57:13–23

    Article  PubMed  CAS  Google Scholar 

  56. Reino JL, Guerrero RF, Hernandez-Galan R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89–123

    Article  CAS  Google Scholar 

  57. Mukherjee PK, Horwitz BA, Kenerley CM (2012) Secondary metabolism in Trichoderma—a genomic perspective. Microbiology 158:35–45

    Article  PubMed  CAS  Google Scholar 

  58. Howell CR (2006) Understanding the mechanisms employed by Trichoderma virens to effect biological control of cotton diseases. Phytopathology 96:178–180

    Article  PubMed  Google Scholar 

  59. Wiest A, Grzegorski D, Xu BW, Goulard C, Rebuffat S, Ebbole DJ, Bodo B, Kenerley CM (2002) Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J Biol Chem 277:20862–20868

    Article  PubMed  CAS  Google Scholar 

  60. Mukherjee PK, Wiest A, Ruiz N, Keightley A, Moran-Diez ME, McCluskey K, Pouchus YF, Kenerley CM (2011) Two classes of new peptaibols are synthesized by a single non-ribosomal peptide synthetase of Trichoderma virens. J Biol Chem 286:4544–4554

    Article  PubMed  CAS  Google Scholar 

  61. Shi M, Chen L, Wang XW, Zhang T, Zhao PB, Song XY, Sun CY, Chen XL, Zhou BC, Zhang YZ (2012) Antimicrobial peptaibols from Trichoderma pseudokoningii induce programmed cell death in plant fungal pathogens. Microbiology 158:166–175

    Article  PubMed  CAS  Google Scholar 

  62. El-Hasan A, Walker F, Buchenauer H (2008) Trichoderma harzianum and its metabolite 6-pentyl-alpha-pyrone suppress fusaric acid produced by Fusarium moniliforme. J Phytopathol 156:79–87

    Article  CAS  Google Scholar 

  63. Vinale F, Ghisalberti EL, Sivasithamparam K, Marra R, Ritieni A, Ferracane R, Woo S, Lorito M (2009) Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Lett Appl Microbiol 48:705–711

    PubMed  CAS  Google Scholar 

  64. Rubio MB, Hermosa R, Reino JL, Collado IG, Monte E (2009) Thctf1 transcription factor of Trichoderma harzianum is involved in 6-pentyl-2H-pyran-2-one production and antifungal activity. Fungal Genet Biol 46:17–27

    Article  PubMed  CAS  Google Scholar 

  65. Seidl V, Song L, Lindquist E, Gruber S, Koptchinskly A, Zeilinger S, Schmoll M, Martinez P, Sun J, Grigoriev I, Herrera-Estrella H, Baker SE, Kubicek CP (2009) Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of fungal prey. BMC Genomics 10:567

    Article  PubMed  Google Scholar 

  66. Druzhinina IS, Shelest E, Kubicek CP (2012) Novel traits of Trichoderma predicted through the analysis of its secretome. FEMS Microbiol Lett. doi:10.1111/j.1574-6968.2012.02665.x

  67. Samolski I, deLuis A, Vizcaino JA, Monte E, Suarez MB (2009) Gene expression analysis of the biocontrol fungus Trichoderma harzianum in the presence of tomato plants, chitin or glucose using a high-density oligonucleotide microarray. BMC Microbiol 9:217

    Article  PubMed  Google Scholar 

  68. Gruber S, Vaaje-Kolstad G, Matarese F, López-Mondéjar R, Kubicek CP, Seidl-Seiboth V (2011) Analysis of subgroup C of fungal chitinases containing chitin-binding and LysM modules in the mycoparasite Trichoderma atroviride. Glycobiology 21:122–133

    Article  PubMed  CAS  Google Scholar 

  69. Reithner B, Ibarra-Laclette E, Mach RL, Herrera-Estrella A (2011) Identification of mycoparasitism-related genes in Trichoderma atroviride. Appl Environ Microbiol 77:4361–4370

    Article  PubMed  CAS  Google Scholar 

  70. Rubio MB, Domínguez S, Monte E, Hermosa R (2012) Comparative study of Trichoderma gene expression in interactions with tomato plants using high-density oligonucleotide microarrays. Microbiology 158:119–128

    Article  PubMed  CAS  Google Scholar 

  71. Dunlap JC, Borkovich KA, Henn MR, Turner GE, Sachs MS, Glass NL, McCluskey K, Plamann M, Galagan JE, Birren BW, Weiss RL, Townsend JP, Loros JJ, Nelson MA, Lambreghts R, Colot HV, Park G, Collopy P, Ringelberg C, Crew C, Litvinkova L, DeCaprio D, Hood HM, Curilla S, Shi M, Crawford M, Koerhsen M, Montgomery P, Larson L, Pearson M, Kasuga T, Tian C, Baştürkmen M, Altamirano L, Xu J (2007) Enabling a community to dissect an organism: overview of the Neurospora functional genomics project. Adv Genet 57:49–96

    Article  PubMed  CAS  Google Scholar 

  72. Mukherjee PK (2011) Genomics of biological control—whole genome sequencing of two mycoparasitic Trichoderma spp. Curr Sci 101:268

    Google Scholar 

Download references

Acknowledgments

Work in the S. Z. laboratory was supported by FWF (P18109 and V139) and WWTF (LS09-036) grants. Genome sequencing was conducted by the US Department of Energy Joint Genome Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Zeilinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, M., Mukherjee, P.K., Horwitz, B.A. et al. Trichoderma–Plant–Pathogen Interactions: Advances in Genetics of Biological Control. Indian J Microbiol 52, 522–529 (2012). https://doi.org/10.1007/s12088-012-0308-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-012-0308-5

Keywords

Navigation