Skip to main content
Log in

Self-organised spatial patterns and chaos in a ratio-dependent predator–prey system

  • Original Paper
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

Mechanisms and scenarios of pattern formation in predator–prey systems have been a focus of many studies recently as they are thought to mimic the processes of ecological patterning in real-world ecosystems. Considerable work has been done with regards to both Turing and non-Turing patterns where the latter often appears to be chaotic. In particular, spatiotemporal chaos remains a controversial issue as it can have important implications for population dynamics. Most of the results, however, were obtained in terms of ‘traditional’ predator–prey models where the per capita predation rate depends on the prey density only. A relatively new family of ratio-dependent predator–prey models remains less studied and still poorly understood, especially when space is taken into account explicitly, in spite of their apparent ecological relevance. In this paper, we consider spatiotemporal pattern formation in a ratio-dependent predator–prey system. We show that the system can develop patterns both inside and outside of the Turing parameter domain. Contrary to widespread opinion, we show that the interaction between two different type of instability, such as the Turing–Hopf bifurcation, does not necessarily lead to the onset of chaos; on the contrary, the emerging patterns remain stationary and almost regular. Spatiotemporal chaos can only be observed for parameters well inside the Turing–Hopf domain. We then investigate the relative importance of these two instability types on the onset of chaos and show that, in a ratio-dependent predator–prey system, the Hopf bifurcation is indeed essential for the onset of chaos whilst the Turing instability is not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Interestingly, Fig. 12 shows remarkable similarity to panel 4 in Fig. 2 in Baurmann et al. (2007) (where the corresponding dynamics was also branded as chaotic), although their interpretation of the underlying mechanism was completely different.

References

  • Abrams P, Ginzburg LR (2000) The nature of predation: prey dependent, ratio dependent or neither? TREE 15:337–341

    PubMed  Google Scholar 

  • Arditi R, Ginzburg LR (1989) Coupling in predator–prey dynamics: ratio-dependence. J Theor Biol 139:311–326

    Article  Google Scholar 

  • Bandyopadhyay M, Chattopadhyay J (2005) Ratio-dependent predator–prey model: effect of environmental fluctuation and stability. Nonlinearity 18:913–936

    Article  Google Scholar 

  • Bartumeus F, Alonso D, Catalana J (2001) Self-organized spatial structures in a ratio-dependent predator–prey model. Physica A 295:53–57

    Article  Google Scholar 

  • Baurmann M, Gross T, Feudel U (2007) Instabilities in spatially extended predator–prey systems: spatio-temporal patterns in the neighborhood of Turing–Hopf bifurcations. J Theor Biol 245:220–229

    Article  PubMed  Google Scholar 

  • Berezovskaya FS, Karev G, Arditi R (2001) Parametric analysis of the ratio-dependent predator–prey model. J Math Biol 43:221–246

    Article  CAS  PubMed  Google Scholar 

  • Berryman AA (1992) The origin and evolution of predator–prey theory. Ecology 73:1530–1535

    Article  Google Scholar 

  • Cantrell RS, Cosner C (2003) Spatial ecology via reaction–diffusion equations. Wiley, London

    Google Scholar 

  • Courchamp F, Berec L, Gascoigne J (2008) Allee effects in ecology and conservation. Oxford University Press, Oxford

    Book  Google Scholar 

  • Couteron P, Lejeune O (2001) Periodic spotted patterns in semi-arid vegetation explained by a propagation-inhibition model. J Ecol 89:616–628

    Article  Google Scholar 

  • Dieckmann U, Law R, Metz AJ (eds) (1999) The geometry of biological interaction: simplifying spatial complexity. Cambridge University Press, New York

    Google Scholar 

  • Elton CS (1924) Periodic fluctuations in the number of animals: their cause and effects. Brit J Exp Biol 2:119–163

    Google Scholar 

  • Fan YH, Li WT (2006) Global asymptotic stability of a ratio-dependent predator–prey system with diffusion. J Comput Appl Math 188:205–227

    Article  Google Scholar 

  • Fasham MJR (1978) The statistical and mathematical analysis of plankton patchiness. Oceanogr Mar Biol Ann Rev 16:43–79

    Google Scholar 

  • Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugenics 7:355–369

    Google Scholar 

  • Gause GF (1935) The struggle for existence. Williams and Wilkins, Baltimore

    Google Scholar 

  • Gurney WSC, Veith AR, Cruichshank I, McGeachin G (1998) Circle and spiral: population persistence in a spatially explicit predator–prey model. Ecology 79:2516–2530

    Google Scholar 

  • Holmes EE, Lewis MA, Banks JE, Veit RR (1994) Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75:17–29

    Article  Google Scholar 

  • Huisman J, Weissing FJ (1999) Biodiversity of plankton by oscillations and chaos. Nature 402:407–410

    Article  Google Scholar 

  • Jost C, Arino O, Arditi R (1999) About deterministic extinction in ratio-dependent predator–prey model. Bull Math Biol 61:19–32

    Article  Google Scholar 

  • Kierstead H, Slobodkin LB (1953) The size of water masses containing plankton blooms. J Mar Res 12:141–147

    Google Scholar 

  • Klausmeier CA (1999) Regular and irregular patterns in semiarid vegetation. Science 284:1826–1828

    Article  CAS  PubMed  Google Scholar 

  • Kozlova I (2002) A numerical study of modelling in mathematical biology. Ph.D. thesis, Swinburne University of Technology, Melbourne, Australia

  • Kozlova I, Singh M, Easton A, Ridland P (2005) Two-spotted spider mite predator–prey model. Math Comput Model 42:1287–1298

    Article  Google Scholar 

  • Kuang Y, Beretta E (1998) Global qualitative analysis of a ratio-dependent predator–prey system. J Math Biol 36:389–406

    Article  Google Scholar 

  • Levin SA, Segel LA (1976) Hypothesis for origin of planktonic patchiness. Nature 259:659

    Google Scholar 

  • Luckinbill LL (1973) Coexistence in laboratory populations of Paramecium aurelia and its predator Didinium nasutum. Ecology 54:1320–1327

    Article  Google Scholar 

  • Luckinbill LL (1974) The effects of space and enrichment on a predator–prey system. Ecology 55:1142–1147

    Article  Google Scholar 

  • MacArthur RH (1972) Geographical ecology. Harper and Row, New York

    Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Malchow H (1993) Spatio-temporal pattern formation in nonlinear nonequilibrium plankton dynamics. Proc R Soc Lond B 251:103–109

    Article  Google Scholar 

  • Malchow H, Petrovskii SV, Venturino E (2008) Spatiotemporal patterns in ecology and epidemiology: theory, models, and simulations. Chapman & Hall, London

    Google Scholar 

  • May RM (1973) Stability and complexity in model ecosystems. Princeton University Press, Princeton

    Google Scholar 

  • May RM (2001) Stability and complexity in model ecosystems. Princeton University Press, Princeton

    Google Scholar 

  • Meinhardt H (1982) Models of biological pattern formation. Academic, London

    Google Scholar 

  • Meixner M, De Wit A, Bose S, Scholl E (1997) Generic spatiotemporal dynamics near codimension-two Turing–Hopf bifurcations. Phys Rev E 55:6690–6697

    Article  CAS  Google Scholar 

  • Meron E (1992) Pattern formation in excitable media. Phys Rep 218:1–66

    Article  Google Scholar 

  • Morozov AY, Petrovskii SV (2009) Excitable population dynamics, biological control failure, and spatiotemporal pattern formation in a model ecosystem. Bull Math Biol 71:863–887

    Article  PubMed  Google Scholar 

  • Morozov AY, Petrovskii SV, Li BL (2004) Bifurcation, chaos and intermittency in the predator–prey system with the Allee effect. Proc R Soc Lond B 271:1407–1414

    Article  Google Scholar 

  • Muratov CB, Osipov VV (1996) Scenarios of domain pattern formation in a reaction–diffusion system. Phys Rev E 54:4860–4879

    Article  CAS  Google Scholar 

  • Murray JD (1989) Mathematical biology. Springer, Heidelberg

    Google Scholar 

  • Nicholson AJ (1957) The self-adjustment of populations to change. Cold Spring Harbor Symp Quant Biol 22:153–174

    Google Scholar 

  • Okubo A (1980) Diffusion and ecological problems: mathematical models. Springer, Berlin

    Google Scholar 

  • Okubo A, Levin S (2001) Diffusion and ecological problems: modern perspectives. Springer, Berlin

    Google Scholar 

  • Pascual M (1993) Diffusion-induced chaos in a spatial predator–prey system. Proc R Soc Lond B 251:1–7

    Article  Google Scholar 

  • Pearson JE (1993) Complex patterns in a simple system. Science 261:189–192

    Article  CAS  PubMed  Google Scholar 

  • Petrovskii SV, Li BL (2006) Exactly solvable models of biological invasion. CRC, Boca Raton

    Google Scholar 

  • Petrovskii SV, Li BL, Malchow H (2004) Transition to spatiotemporal chaos can resolve the paradox of enrichment. Ecol Complexity 1:37–47

    Article  Google Scholar 

  • Petrovskii SV, Malchow H (1999) A minimal model of pattern formation in a prey–predator system. Math Comput Model 29:49–63

    Article  Google Scholar 

  • Petrovskii SV, Malchow H (2001) Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics. Theor Popul Biol 59:157–174

    Article  CAS  PubMed  Google Scholar 

  • Petrovskii SV, Morozov AY, Venturino E (2002) Allee effect makes possible patchy invasion in predator–prey system. Ecol Lett 5:345–352

    Article  Google Scholar 

  • Petrovskii SV, Li BL, Malchow H (2003) Quantification of the spatial aspect of chaotic dynamics in biological and chemical systems. Bull Math Biol 65:425–446

    Article  PubMed  Google Scholar 

  • Rosenzweig ML (1971) Paradox of enrichment: destabilization of exploitation ecosystem in ecological time. Science 171:385–387

    Article  CAS  PubMed  Google Scholar 

  • Sagués F, Sancho JM, García-Ojalvo J (2007) Spatiotemporal order out of noise. Rev Mod Phys 79:829–882

    Article  Google Scholar 

  • Segel LA, Jackson JL (1972) Dissipative structure: an explanation and an ecological example. J Theor Biol 37:545–559

    Article  CAS  PubMed  Google Scholar 

  • Seuront L (2009) Fractals and multifractals in ecology and aquatic science. Chapman & Hall, London

    Book  Google Scholar 

  • Sherratt JA (2001) Periodic travelling waves in cyclic predator–prey systems. Ecol Lett 4:30–37

    Article  Google Scholar 

  • Sherratt JA, Smith MJ (2007) The effects of unequal diffusion coefficients on periodic travelling waves in oscillatory reactiondiffusion systems. Physica D 236:90–103

    Article  Google Scholar 

  • Sherratt JA, Smith M (2008) Periodic travelling waves in cyclic populations: field studies and reaction diffusion models. J R Soc Interface 5:483–505

    Article  PubMed  Google Scholar 

  • Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  • Smith MJ, Rademacher JDM, Sherratt JA (2009) Absolute stability of wavetrains can explain spatiotemporal dynamics in reaction-diffusion systems of lambda–omega type. SIAM J Appl Dyn Sys 8:1136–1159

    Article  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton

    Google Scholar 

  • Tilman D (1994) Competition and bioderversity in spatially structured habitats. Ecology 75:2–16

    Article  Google Scholar 

  • Truscott JE, Brindley J (1994) Ocean plankton populations as excitable media. Bull Math Biol 56:981–998

    Google Scholar 

  • Turchin P (2003) Complex population dynamics: a theoretical/empirical synthesis. Princeton University Press, Princeton

    Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Phil Trans R Soc Lond B 237:37–72

    Article  Google Scholar 

  • Volpert V, Petrovskii SV (2009) Reaction–diffusion waves in biology. Phys Life Rev 6:267–310

    Article  Google Scholar 

  • Xiao D, Ruan S (2001) Global dynamics of a ratio-dependent predator–prey systems. J Math Biol 43:221–290

    Article  Google Scholar 

  • Yodzis P (1989) Introduction to theoretical ecology. Harper and Row, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Petrovskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, M., Petrovskii, S. Self-organised spatial patterns and chaos in a ratio-dependent predator–prey system. Theor Ecol 4, 37–53 (2011). https://doi.org/10.1007/s12080-010-0073-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-010-0073-1

Keywords

Navigation