Skip to main content
Log in

Calcium sensing receptor stimulates breast cancer cell migration via the Gβγ-AKT-mTORC2 signaling pathway

  • Research Article
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Calcium sensing receptor, a pleiotropic G protein coupled receptor, activates secretory pathways in cancer cells and putatively exacerbates their metastatic behavior. Here, we show that various CaSR mutants, identified in breast cancer patients, differ in their ability to stimulate Rac, a small Rho GTPase linked to cytoskeletal reorganization and cell protrusion, but are similarly active on the mitogenic ERK pathway. To investigate how CaSR activates Rac and drives cell migration, we used invasive MDA-MB-231 breast cancer cells. We revealed, by pharmacological and knockdown strategies, that CaSR activates Rac and cell migration via the Gβγ-PI3K-mTORC2 pathway. These findings further support current efforts to validate CaSR as a relevant therapeutic target in metastatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguirre A, Gonzalez A, Planell JA, Engel E (2010) Extracellular calcium modulates in vitro bone marrow-derived Flk-1+ CD34+ progenitor cell chemotaxis and differentiation through a calcium-sensing receptor. Biochem Biophys Res Commun 393(1):156–161

    Article  CAS  PubMed  Google Scholar 

  • Arvisais EW, Romanelli A, Hou X, Davis JS (2006) AKT-independent phosphorylation of TSC2 and activation of mTOR and ribosomal protein S6 kinase signaling by prostaglandin F2alpha. J Biol Chem 281(37):26904–26913

    Article  CAS  PubMed  Google Scholar 

  • Bai M, Quinn S, Trivedi S, Kifor O, Pearce SH, Pollak MR, Krapcho K, Hebert SC, Brown EM (1996) Expression and characterization of inactivating and activating mutations in the human Ca2+o-sensing receptor. J Biol Chem 271(32):19537–19545

    Article  CAS  PubMed  Google Scholar 

  • Bai M, Trivedi S, Kifor O, Quinn SJ, Brown EM (1999) Intermolecular interactions between dimeric calcium-sensing receptor monomers are important for its normal function. Proc Natl Acad Sci U S A 96(6):2834–2839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhagavathula N, Kelley EA, Reddy M, Nerusu KC, Leonard C, Fay K, Chakrabarty S, Varani J (2005) Upregulation of calcium-sensing receptor and mitogen-activated protein kinase signalling in the regulation of growth and differentiation in colon carcinoma. Br J Cancer 93(12):1364–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhaskar PT, Hay N (2007) The two TORCs and Akt. Dev Cell 12(4):487–502

    Article  CAS  PubMed  Google Scholar 

  • Boudot C, Henaut L, Thiem U, Geraci S, Galante M, Saldanha P, Saidak Z, Six I, Clezardin P, Kamel S, Mentaverri R (2017) Overexpression of a functional calcium-sensing receptor dramatically increases osteolytic potential of MDA-MB-231 cells in a mouse model of bone metastasis through epiregulin-mediated osteoprotegerin downregulation. Oncotarget 8(34):56460–56472

    Article  PubMed  PubMed Central  Google Scholar 

  • Bracho-Valdes I, Moreno-Alvarez P, Valencia-Martinez I, Robles-Molina E, Chavez-Vargas L, Vazquez-Prado J (2011) mTORC1- and mTORC2-interacting proteins keep their multifunctional partners focused. IUBMB Life 63(10):896–914

    Article  PubMed  Google Scholar 

  • Brown EM, MacLeod RJ (2001) Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 81(1):239–297

    Article  CAS  PubMed  Google Scholar 

  • Carretero-Ortega J, Walsh CT, Hernandez-Garcia R, Reyes-Cruz G, Brown JH, Vazquez-Prado J (2010) Phosphatidylinositol 3,4,5-triphosphate-dependent Rac exchanger 1 (P-Rex-1), a guanine nucleotide exchange factor for Rac, mediates angiogenic responses to stromal cell-derived factor-1/chemokine stromal cell derived factor-1 (SDF-1/CXCL-12) linked to Rac activation, endothelial cell migration, and in vitro angiogenesis. Mol Pharmacol 77(3):435–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casey LM, Pistner AR, Belmonte SL, Migdalovich D, Stolpnik O, Nwakanma FE, Vorobiof G, Dunaevsky O, Matavel A, Lopes CM, Smrcka AV, Blaxall BC (2010) Small molecule disruption of G beta gamma signaling inhibits the progression of heart failure. Circ Res 107(4):532–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cervantes-Villagrana RD, Adame-Garcia SR, Garcia-Jimenez I, Color-Aparicio VM, Beltran-Navarro YM, Konig GM, Kostenis E, Reyes-Cruz G, Gutkind JS, Vazquez-Prado J (2019) Gbetagamma signaling to the chemotactic effector P-REX1 and mammalian cell migration is directly regulated by Galphaq and Galpha13 proteins. J Biol Chem 294(2):531–546

    Article  CAS  PubMed  Google Scholar 

  • Cervantes-Villagrana RD, Beltran-Navarro YM, Garcia-Jimenez I, Adame-Garcia SR, Olguin-Olguin A, Reyes-Cruz G, Vazquez-Prado J (2021) Gbetagamma recruits and activates P-Rex1 via two independent binding interfaces. Biochem Biophys Res Commun 539:20–27

    Article  CAS  PubMed  Google Scholar 

  • Dada S, Demartines N, Dormond O (2008) mTORC2 regulates PGE2-mediated endothelial cell survival and migration. Biochem Biophys Res Commun 372(4):875–879

    Article  CAS  PubMed  Google Scholar 

  • Das S, Clezardin P, Kamel S, Brazier M, Mentaverri R (2020) The CaSR in pathogenesis of breast cancer: a new target for early stage bone metastases. Front Oncol 10:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Davey AE, Leach K, Valant C, Conigrave AD, Sexton PM, Christopoulos A (2012) Positive and negative allosteric modulators promote biased signaling at the calcium-sensing receptor. Endocrinology 153(3):1232–1241

    Article  CAS  PubMed  Google Scholar 

  • El Hiani Y, Lehen’kyi V, Ouadid-Ahidouch H, Ahidouch A (2009) Activation of the calcium-sensing receptor by high calcium induced breast cancer cell proliferation and TRPC1 cation channel over-expression potentially through EGFR pathways. Arch Biochem Biophys 486(1):58–63

    Article  PubMed  Google Scholar 

  • Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanna S, El-Sibai M (2013) Signaling networks of Rho GTPases in cell motility. Cell Signal 25(10):1955–1961

    Article  CAS  PubMed  Google Scholar 

  • Hauache OM, Hu J, Ray K, Xie R, Jacobson KA, Spiegel AM (2000) Effects of a calcimimetic compound and naturally activating mutations on the human Ca2+ receptor and on Ca2+ receptor/metabotropic glutamate chimeric receptors. Endocrinology 141(11):4156–4163

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Bedolla MA, Carretero-Ortega J, Valadez-Sanchez M, Vazquez-Prado J, Reyes-Cruz G (2015) Chemotactic and proangiogenic role of calcium sensing receptor is linked to secretion of multiple cytokines and growth factors in breast cancer MDA-MB-231 cells. Biochem Biophys Acta 1853(1):166–182

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Negrete I, Carretero-Ortega J, Rosenfeldt H, Hernandez-Garcia R, Calderon-Salinas JV, Reyes-Cruz G, Gutkind JS, Vazquez-Prado J (2007) P-Rex1 links mammalian target of rapamycin signaling to Rac activation and cell migration. J Biol Chem 282(32):23708–23715

    Article  CAS  PubMed  Google Scholar 

  • Hou L, Klann E (2004) Activation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression. J Neurosci 24(28):6352–6361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houslay DM, Anderson KE, Chessa T, Kulkarni S, Fritsch R, Downward J, Backer JM, Stephens LR, Hawkins PT (2016) Coincident signals from GPCRs and receptor tyrosine kinases are uniquely transduced by PI3Kbeta in myeloid cells. Sci Signal 9(441):ra82

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang K, Fingar DC (2014) Growing knowledge of the mTOR signaling network. Semin Cell Dev Biol 36:79–90

    Article  PubMed  Google Scholar 

  • Iamartino L, Elajnaf T, Gall K, David J, Manhardt T, Heffeter P, Grusch M, Derdak S, Baumgartner-Parzer S (1867) Schepelmann M and Kallay E (2020) Effects of pharmacological calcimimetics on colorectal cancer cells over-expressing the human calcium-sensing receptor. Biochimica Et Biophysica Acta Molecular Cell Res 12:118836

    Google Scholar 

  • Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6(11):1122–1128

    Article  CAS  PubMed  Google Scholar 

  • Joeckel E, Haber T, Prawitt D, Junker K, Hampel C, Thuroff JW, Roos FC, Brenner W (2014) High calcium concentration in bones promotes bone metastasis in renal cell carcinomas expressing calcium-sensing receptor. Mol Cancer 13:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim W, Takyar FM, Swan K, Jeong J, VanHouten J, Sullivan C, Dann P, Yu H, Fiaschi-Taesch N, Chang W, Wysolmerski J (2016) Calcium-sensing receptor promotes breast cancer by stimulating intracrine actions of parathyroid hormone-related protein. Can Res 76(18):5348–5360

    Article  CAS  Google Scholar 

  • Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2(2):329–333

    Article  CAS  PubMed  Google Scholar 

  • Liao J, Schneider A, Datta NS, McCauley LK (2006a) Extracellular calcium as a candidate mediator of prostate cancer skeletal metastasis. Cancer Res 66(18):9065–9073

    Article  CAS  PubMed  Google Scholar 

  • Liao J, Schneider A, Datta NS, McCauley LK (2006b) Extracellular calcium as a candidate mediator of prostate cancer skeletal metastasis. Can Res 66(18):9065–9073

    Article  CAS  Google Scholar 

  • Lienhardt A, Garabedian M, Bai M, Sinding C, Zhang Z, Lagarde JP, Boulesteix J, Rigaud M, Brown EM, Kottler ML (2000) A large homozygous or heterozygous in-frame deletion within the calcium-sensing receptor’s carboxylterminal cytoplasmic tail that causes autosomal dominant hypocalcemia. J Clin Endocrinol Metab 85(4):1695–1702

    CAS  PubMed  Google Scholar 

  • Ling S, Shi P, Liu S, Meng X, Zhou Y, Sun W, Chang S, Zhang X, Zhang L, Shi C, Sun D, Liu L, Tian C (2021) Structural mechanism of cooperative activation of the human calcium-sensing receptor by Ca(2+) ions and L-tryptophan. Cell Res 31(4):383–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu GY, Sabatini DM (2020) mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol 21(4):183–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyda JK, Tan ZL, Rajah A, Momi A, Mackay L, Brown CM, Khadra A (2019) Rac activation is key to cell motility and directionality: An experimental and modelling investigation. Comput Struct Biotechnol J 17:1436–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacLeod RJ, Yano S, Chattopadhyay N, Brown EM (2004) Extracellular calcium-sensing receptor transactivates the epidermal growth factor receptor by a triple-membrane-spanning signaling mechanism. Biochem Biophys Res Commun 320(2):455–460

    Article  CAS  PubMed  Google Scholar 

  • Mamillapalli R, VanHouten J, Zawalich W, Wysolmerski J (2008) Switching of G-protein usage by the calcium-sensing receptor reverses its effect on parathyroid hormone-related protein secretion in normal versus malignant breast cells. J Biol Chem 283(36):24435–24447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayr B, Glaudo M, Schofl C (2016) Activating calcium-sensing receptor mutations: prospects for future treatment with calcilytics. Trends Endocrinol Metab 27(9):643–652

    Article  CAS  PubMed  Google Scholar 

  • Mihai R, Stevens J, McKinney C, Ibrahim NB (2006) Expression of the calcium receptor in human breast cancer–a potential new marker predicting the risk of bone metastases. Eur J Surg Oncol 32(5):511–515

    Article  CAS  PubMed  Google Scholar 

  • Nemeth EF, Delmar EG, Heaton WL, Miller MA, Lambert LD, Conklin RL et al (2001) Calcilytic compounds: potent and selective Ca2+ receptor antagonists that stimulate secretion of parathyroid hormone. J Pharm Exp Ther 299(1):323–331

  • Oh WJ, Jacinto E (2011) mTOR complex 2 signaling and functions. Cell Cycle 10(14):2305–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Hayre M, Vazquez-Prado J, Kufareva I, Stawiski EW, Handel TM, Seshagiri S, Gutkind JS (2013) The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat Rev Cancer 13(6):412–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olszak IT, Poznansky MC, Evans RH, Olson D, Kos C, Pollak MR, Brown EM, Scadden DT (2000) Extracellular calcium elicits a chemokinetic response from monocytes in vitro and in vivo. J Clin Invest 105(9):1299–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollak MR, Brown EM, Chou YH, Hebert SC, Marx SJ, Steinmann B, Levi T, Seidman CE, Seidman JG (1993) Mutations in the human Ca(2+)-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 75(7):1297–1303

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Cruz G, Hu J, Goldsmith PK, Steinbach PJ, Spiegel AM (2001) Human Ca(2+) receptor extracellular domain Analysis of function of lobe I loop deletion mutants. J Biol Chem 276(34):32145–32151

    Article  CAS  PubMed  Google Scholar 

  • Reynolds TH, Bodine SC, Lawrence JC (2002) Control of Ser2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load. J Biol Chem 277(20):17657–17662

    Article  CAS  PubMed  Google Scholar 

  • Riccardi D, Valenti G (2016) Localization and function of the renal calcium-sensing receptor. Nat Rev Nephrol 12(7):414–425

    Article  CAS  PubMed  Google Scholar 

  • Robles-Molina E, Dionisio-Vicuna M, Guzman-Hernandez ML, Reyes-Cruz G, Vazquez-Prado J (2014) Gbetagamma interacts with mTOR and promotes its activation. Biochem Biophys Res Commun 444(2):218–223

    Article  CAS  PubMed  Google Scholar 

  • Rybchyn MS, Islam KS, Brennan-Speranza TC, Cheng Z, Brennan SC, Chang W, Mason RS, Conigrave AD (2019) Homer1 mediates CaSR-dependent activation of mTOR complex 2 and initiates a novel pathway for AKT-dependent beta-catenin stabilization in osteoblasts. J Biol Chem 294(44):16337–16350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saidak Z, Boudot C, Abdoune R, Petit L, Brazier M, Mentaverri R, Kamel S (2009) Extracellular calcium promotes the migration of breast cancer cells through the activation of the calcium sensing receptor. Exp Cell Res 315(12):2072–2080

    Article  CAS  PubMed  Google Scholar 

  • Sanders JL, Chattopadhyay N, Kifor O, Yamaguchi T, Butters RR, Brown EM (2000) Extracellular calcium-sensing receptor expression and its potential role in regulating parathyroid hormone-related peptide secretion in human breast cancer cell lines. Endocrinology 141(12):4357–4364

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14(14):1296–1302

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22(2):159–168

    Article  CAS  PubMed  Google Scholar 

  • Saxton RA, Sabatini DM (2017) mTOR Signaling in growth, metabolism, and disease. Cell 169(2):361–371

    Article  CAS  PubMed  Google Scholar 

  • Stephens LR, Eguinoa A, Erdjument-Bromage H, Lui M, Cooke F, Coadwell J, Smrcka AS, Thelen M, Cadwallader K, Tempst P, Hawkins PT (1997) The G beta gamma sensitivity of a PI3K is dependent upon a tightly associated adaptor, p101. Cell 89(1):105–114

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Sun Z, Runne C, Madsen J, Domann F, Henry M, Lin F, Chen S (2011) A critical role of Gbetagamma in tumorigenesis and metastasis of breast cancer. J Biol Chem 286(15):13244–13254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, Boutselakis H, Cole CG, Creatore C, Dawson E, Fish P, Harsha B, Hathaway C, Jupe SC, Kok CY, Noble K, Ponting L, Ramshaw CC, Rye CE, Speedy HE, Stefancsik R, Thompson SL, Wang S, Ward S, Campbell PJ, Forbes SA (2019) COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res 47(D1):D941–D947

    Article  CAS  PubMed  Google Scholar 

  • Tennakoon S, Aggarwal A and Kallay E (2015) The calcium-sensing receptor and the hallmarks of cancer. Biochimica et biophysica acta 2015.

  • Tfelt-Hansen J, Yano S, John Macleod R, Smajilovic S, Chattopadhyay N, Brown EM (2005) High calcium activates the EGF receptor potentially through the calcium-sensing receptor in Leydig cancer cells. Growth Factors 23(2):117–123

    Article  CAS  PubMed  Google Scholar 

  • Tomlins SA, Bolllinger N, Creim J, Rodland KD (2005) Cross-talk between the calcium-sensing receptor and the epidermal growth factor receptor in Rat-1 fibroblasts. Exp Cell Res 308(2):439–445

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Prado J, Bracho-Valdes I, Cervantes-Villagrana RD, Reyes-Cruz G (2016) Gbetagamma Pathways in Cell Polarity and Migration Linked to Oncogenic GPCR Signaling: Potential Relevance in Tumor Microenvironment. Mol Pharmacol 90(5):573–586

    Article  CAS  PubMed  Google Scholar 

  • Welch HC, Coadwell WJ, Ellson CD, Ferguson GJ, Andrews SR, Erdjument-Bromage H, Tempst P, Hawkins PT, Stephens LR (2002) P-Rex1, a PtdIns(3,4,5)P3- and Gbetagamma-regulated guanine-nucleotide exchange factor for Rac. Cell 108(6):809–821

    Article  CAS  PubMed  Google Scholar 

  • Wen T, Wang Z, Chen X, Ren Y, Lu X, Xing Y, Lu J, Chang S, Zhang X, Shen Y, Yang X (2021) Structural basis for activation and allosteric modulation of full-length calcium-sensing receptor. Sci Adv 7(23):eabg1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Liu P, Wei W (2014) mTOR signaling in tumorigenesis. Biochem Biophys Acta 1846(2):638–654

    CAS  PubMed  Google Scholar 

  • Yamaguchi T, Chattopadhyay N, Kifor O, Butters RR Jr, Sugimoto T, Brown EM (1998a) Mouse osteoblastic cell line (MC3T3-E1) expresses extracellular calcium (Ca2+o)-sensing receptor and its agonists stimulate chemotaxis and proliferation of MC3T3-E1 cells. J Bone Miner Res 13(10):1530–1538

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Kifor O, Chattopadhyay N, Bai M, Brown EM (1998b) Extracellular calcium (Ca2+o)-sensing receptor in a mouse monocyte-macrophage cell line (J774): potential mediator of the actions of Ca2+o on the function of J774 cells. J Bone Miner Res 13(9):1390–1397

    Article  CAS  PubMed  Google Scholar 

  • Yano SMR, Chattopadhyay N, Tfelt-Hansen J, Kifor O, Butters RR, Brown EM (2004) Calcium-sensing receptor activation stimulates parathyroid hormone-related protein secretion in prostate cancer cells: role of epidermal growth factor receptor transactivation. Bone 35(3):664–672

    Article  CAS  PubMed  Google Scholar 

  • Zavala-Barrera C, Del-Rio-Robles JE, Garcia-Jimenez I, Egusquiza-Alvarez CA, Hernandez-Maldonado JP, Vazquez-Prado J, Reyes-Cruz G (2021) The calcium sensing receptor (CaSR) promotes Rab27B expression and activity to control secretion in breast cancer cells. Biochim Biophys Acta Mol Cell Res 1868(7):119026

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Bajraszewski N, Wu E, Wang H, Moseman AP, Dabora SL, Griffin JD, Kwiatkowski DJ (2007) PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J Clin Invest 117(3):730–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zong-Lin Zhang Z-RL, Li J-S, Wang S-R (2020) Calcium-sensing receptor antagonist NPS-2143 suppresses proliferation and invasion of gastric cancer cells. Cancer Gene Ther 27(7–8):548–557

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the technical assistance provided by Estanislao Escobar-Islas, Jaime Estrada-Trejo, Israel Valencia-Martínez and David Pérez. The authors express their gratitude to Maggie Brunner, MA, for editorial/style corrections. The authors declare no conflict of interest. This work was supported by grants from CONACyT (240119 and CF-2019-1794 to G.R.C.) and (286274 to J.V.P.), Fondo Sep-CINVESTAV (FidSC2018/3 to G.R.C.). L.B. O-C, J.E. del-R-R, I. G-J, C. Z-B, Y.M. B-N, J. J. H-M, I. R-R, M.A, H-B; and A.P. R-I are and were graduate students supported by CONACyT fellowships. The authors declare that there are no competing interests associated with the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: L.B. O-C; J.E. del-R-R; I. R-R; J.V.P., and G.R.C. Supervised the study: G.R.C. Performed the experiments: L.B. O-C; J.E. del-R-R; C. Z-B; I. G-J; I. R-R; M.A. H-B; A.P. R-I, J. J.H-M, and M.V-S. Performed data mining: Y.M. B-N. Analyzed the data: L.B. O-C; J.E. del-R-R; C. Z-B; I.G-J; I.R-R, and M.A.H-B. Wrote the paper: L.B. O-C; J.V.P. and G.R.C. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Guadalupe Reyes-Cruz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orduña-Castillo, L.B., del-Río-Robles, J.E., García-Jiménez, I. et al. Calcium sensing receptor stimulates breast cancer cell migration via the Gβγ-AKT-mTORC2 signaling pathway. J. Cell Commun. Signal. 16, 239–252 (2022). https://doi.org/10.1007/s12079-021-00662-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-021-00662-y

Keywords

Navigation