Skip to main content
Log in

Mechanistic regulation of epithelial-to-mesenchymal transition through RAS signaling pathway and therapeutic implications in human cancer

  • Review
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

RAS effector signaling instead of being simple, unidirectional and linear cascade, is actually recognized as highly complex and dynamic signaling network. RAF-MEK-ERK cascade, being at the center of complex signaling network, links to multiple scaffold proteins through feed forward and feedback mechanisms and dynamically regulate tumor initiation and progression. Three isoforms of Ras harbor mutations in a cell and tissue specific manner. Besides mutations, their epigenetic silencing also attributes them to exhibit oncogenic activities. Recent evidences support the functions of RAS oncoproteins in the acquisition of tumor cells with Epithelial-to-mesenchymal transition (EMT) features/ epithelial plasticity, enhanced metastatic potential and poor patient survival. Google Scholar electronic databases and PubMed were searched for original papers and reviews available till date to collect information on stimulation of EMT core inducers in a Ras driven cancer and their regulation in metastatic spread. Improved understanding of the mechanistic basis of regulatory interactions of microRNAs (miRs) and EMT by reprogramming the expression of targets in Ras activated cancer, may help in designing effective anticancer therapies. Apparent lack of adverse events associated with the delivery of miRs and tissue response make ‘drug target miRNA’ an ideal therapeutic tool to achieve progression free clinical response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed N, Maines-Bandiera S, Quinn MA, Unger WG, Dedhar S, Auersperg N (2006) Molecular pathways regulating EGF-induced epithelio-mesenchymal transition in human ovarian surface epithelium. Am J Phys Cell Phys 290(6):C1532–C1542

    Article  CAS  Google Scholar 

  • Akagi K, Uchibori R, Yamaguchi K, Kurosawa K, Tanaka Y, Kozu T (2007) Characterization of a novel oncogenic K-RAS mutation in colon cancer. Biochem Biophys Res Commun 352:728–732

    Article  PubMed  CAS  Google Scholar 

  • Amankwatia EB, Chakravarty P, Carey A, Weidlich S, Steele RJ, Munro AJ, Wolf CR, Smith G (2015) MicroRNA-224 is associated with colorectal cancer progression and response to 5-fluorouracil-based chemotherapy by K-RAS-dependent an independent mechanisms. Br J Cancer 112(9):1480–1490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andreolas C, Kalogeropoulou M, Voulgari A, Pintzas A (2008) Fra-1 regulates vimentin during ha-RAS-induced epithelial mesenchymal transition in human colon carcinoma cells. Int J Cancer 122:1745–1756

    Article  PubMed  CAS  Google Scholar 

  • Atreya CE, Corcoran RB, Kopetz S (2015) Expanded RAS: refining the patient population. J Clin Oncol 33(7):682–685

    Article  PubMed  PubMed Central  Google Scholar 

  • Baksh S, Tommasi S, Fenton S, VC Y, Martins LM, Pfeifer GP, Latif F, Downward J, Neel BG (2005) The tumor suppressor RASSF1A and MAP-1 link death receptor signaling to Bax conformational change and cell death. Mol Cell 18(6):637–650

    Article  PubMed  CAS  Google Scholar 

  • Banerjee SK, Zoubine MN, Mullick M, Weston AP, Cherian R, Campbell DR (2000) Tumor angiogenesis in chronic pancreatitis and pancreatic adenocarcinoma: impact of K-ras mutations. Pancreas 20(3):248–255

    Article  PubMed  CAS  Google Scholar 

  • Basbous J, Chalbos D, Hipskind R, Jariel-Encontre I, Piechaczyk M (2007) Ubiquitin-independent degradation of Fra-1 is antagonized by Erk1/2 pathway-mediated phosphorylation of a unique C-terminal destabilize. Mol Cell Biol 27:3936–3950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, García D, Herreros A (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2:84–89

    Article  PubMed  CAS  Google Scholar 

  • Bhatia S, Monkman J, Toh AKL, Nagaraj SH, Thompson EW (2017) Targeting epithelial-mesenchymal plasticity in cancer: clinical and preclinical advances in therapy and monitoring. Biochem J 474(19):3269–3306

    Article  PubMed  CAS  Google Scholar 

  • Blaj C, Schmidt EM, Lamprecht S, Hermeking H, Jung A, Kirchner T, Horst D (2017) Oncogenic effects of high MAPK activity in colorectal cancer mark progenitor cells and persist irrespective of RAS mutations. Cancer Res 77(7):1763–1774

    Article  PubMed  CAS  Google Scholar 

  • Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129:865–877

    Article  PubMed  CAS  Google Scholar 

  • Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, Goodall GJ (2008) A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68:7846–7854

    Article  PubMed  CAS  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R (2002) Stable suppression of tumorigenicity by virus mediated RNA interference. Cancer Cell 2(3):243–247

    Article  PubMed  CAS  Google Scholar 

  • Buday L, Downward J (1993) Epidermal growth factor regulates p21Ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 73(3):611–620

    Article  PubMed  CAS  Google Scholar 

  • Burgess MR, Hwang E, Mroue R, Bielski CM, Wandler AM, Huang B, Firestone AJ, Young A, LaCap JA, Crocker L, Asthana S, Davis EM, Xu J, Akagi K, Le Beau MM, Li Q, Haley B, Stokoe D, Sampath D, Taylor BS, Evangelista M, Shannon K (2017) KRAS allelic imbalance enhances fitness and modulates MAP kinase dependence in cancer. Cell 168(5):817–829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9:582–589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cancer Genome Atlas Research Network. Electronic address: andrew_aguirre@dfci.harvard.edu; Cancer Genome Atlas Research Network (2017) Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 32(2):185–203.e13

    Article  CAS  Google Scholar 

  • Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2:76–83

    Article  PubMed  CAS  Google Scholar 

  • Capon DJ, Chen EY, Levinson AD, Seeburg PH, Goeddel DV (1983) Complete nucleotide sequences of the T24 human bladder carcinoma oncogene and its normal homologue. Nature 302(5903):33–37

    Article  PubMed  CAS  Google Scholar 

  • Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282(5392):1318–1321

    Article  PubMed  CAS  Google Scholar 

  • Casalino L, De CD, Verde P (2003) Accumulation of Fra-1 in Ras-transformed cells depends on both transcriptional autoregulation and MEK-dependent posttranslational stabilization. Mol Cell Biol 23:4401–4415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castellano E, Downward J (2011) RAS interaction with PI3K: more than just another effector pathway. Genes Cancer 2:261–274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castellano E, Sheridan C, Thin MZ, Nye E, Spencer-Dene B, Diefenbacher ME, Moore C, Kumar MS, Murillo MM, Gronroos E, Lassailly F, Stamp G, Downward J (2013) Requirement for interaction of PI3-kinase p110a with RAS in lung tumor maintenance. Cancer Cell 24:617–630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen KJ, Hou Y, Wang K, Li J, Xia Y, Yang XY, Lv G, Xing XL, Shen F (2014) Reexpression of let-7g microRNA inhibits the proliferation and migration via K-Ras/HMGA2/snail axis in hepatocellular carcinoma. Biomed Res Int 2014:742417

    PubMed  PubMed Central  Google Scholar 

  • Chen SJ, Chen YT, Zeng LJ, Zhang QB, Lian GD, Li JJ, Yang KG, Huang CM, Li YQ, Chu ZH, Huang KH (2016) Bmi1 combines with oncogenic KRAS to induce malignant transformation of human pancreatic duct cells in vitro. Tumour Biol 37(8):11299–11309

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Wang X, Liu R, Chen L, Yi J, Qi B, Shuang Z, Liu M, Li X, Li S, Tang H (2017) KDM4B-mediated epigenetic silencing of miRNA-615-5p augments RAB24 to facilitate malignancy of hepatoma cells. Oncotarget 8(11):17712–17725

    PubMed  Google Scholar 

  • Cherfils J, Zeghouf M (2013) Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93:269–309

    Article  PubMed  CAS  Google Scholar 

  • Chien Y, White MA (2003) RAL GTPases are linchpin modulators of human tumour-cell proliferation and survival. EMBO Rep 4(8):800–806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clark EA, Golub TR, Lander ES, Hynes RO (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406:532–535

    Article  PubMed  CAS  Google Scholar 

  • Clarke S (1992) Protein-terminal isoprenylation and methylation at carboxyl cysteine residues. Annu Rev Biochem 61:355–386

    Article  PubMed  CAS  Google Scholar 

  • Cox AD, Der CJ (2010) RAS history: the saga continues. Small GTPases 1(1):2–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ (2014) Drugging the undruggable RAS: mission possible? Nat Rev 13(11):828–851

    CAS  Google Scholar 

  • Diaz-Meco MT, Lozano J, Municio MM, Berra E, Frutos S, Sanz L, Moscat J (1994) Evidence for the in vitro and in vivo interaction of Ras with protein kinase C zet. J Biol Chem 269(50):31706–31710

    PubMed  CAS  Google Scholar 

  • Diesch J, Sanij E, Gilan O, Love C, Tran H, Fleming NI, Ellul J, Amalia M, Haviv I, Pearson RB, Tulchinsky E, Mariadason JM, Sieber OM, Hannan RD, Dhillon AS (2014) Widespread FRA1-dependent control of mesenchymal transdifferentiation programs in colorectal cancer cells. PLoS One 9(3):e88950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edkins S, O’Meara S, Parker A, Stevens C, Reis M, Jones S, Greenman C, Davies H, Dalgliesh G, Forbes S, Hunter C, Smith R, Stephens P, Goldstraw P, Nicholson A, Chan TL, Velculescu VE, Yuen ST, Leung SY, Stratton MR, Futreal PA (2006) Recurrent KRAS codon 146 mutations in human colorectal cancer. Cancer Biol Ther 5:928–932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edme N, Downward J, Thiery JP, Boyer B (2002) Ras induces NBT-II epithelial cell scattering through the coordinate activities of Rac and MAPK pathways. J Cell Sci 115:2591–2601

    PubMed  CAS  Google Scholar 

  • Eijkelenboom A, Burgering BM (2013) FOXOs: signaling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol 14:83–97

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Wang X, Zhu W, Chen S, Feng C (2017) MicroRNA-630 suppresses epithelial-to-mesenchymal transition by regulating FoxM1 in gastric cancer cells. Biochemistry (Mosc) 82(6):707–714

    Article  CAS  Google Scholar 

  • Ferro E, Trabalzini L (2010) RalGDS family members couple Ras to Ral signalling and that’s not all. Cell Signal 22:1804–1810

    Article  PubMed  CAS  Google Scholar 

  • Garg M (2013) Epithelial-mesenchymal transition- activating transcription factors – multifunctional regulators in cancer. World Journal of Stem Cells 5(4):188–195

    Article  PubMed  PubMed Central  Google Scholar 

  • Garg M (2015) Targeting microRNAs in epithelial mesenchymal transition induced cancer stem cells: therapeutic approaches in cancer. Expert opinion in therapeutic. Targets 19(2):285–297

    CAS  Google Scholar 

  • Garg M (2017) Epithelial, mesenchymal and hybrid epithelial/ mesenchymal phenotypes and their clinical relevance in cancer metastasis. Expert Rev Mol Med 19:e3

    Article  PubMed  CAS  Google Scholar 

  • Gebeshuber CA, Zatloukal K, Martinez J (2009) miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep 10(4):400–405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonzalez-Garcia A, Pritchard CA, Paterson HF, Mavria G, Stamp G, Marshall CJ (2005) RALGDS is required for tumor formation in a model of skin carcinogenesis. Cancer Cell 7:219–226

    Article  PubMed  CAS  Google Scholar 

  • Graham TR, Zhau HE, Odero-Marah VA, Osunkoya AO, Kimbro KS, Tighiouart M, Liu T, Simons JW, O'Regan RM (2008) Insulin-like growth factor-independent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res 68(7):2479–2488

    Article  PubMed  CAS  Google Scholar 

  • Grant ML, Bruton RK, Byrd PJ, Gallimore PH, Steele JC, Taylor AM, Grand RJ (1990) Sensitivity to ionising radiation of transformed human cells containing mutant Ras genes. Oncogene 5(8):1159–1164

    PubMed  CAS  Google Scholar 

  • Greenburg G, Hay ED (1982) Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol 95(1):333–339

    Article  PubMed  CAS  Google Scholar 

  • Greenburg G, Hay ED (1986) Cytodifferentiation and tissue phenotype change during transformation of embryonic lens epithelium to mesenchyme-like cells in vitro. Dev Biol 115(2):363–379

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Ramjaun AR, Haiko P, Wang Y, Warne PH, Nicke B, Nye E, Stamp G, Alitalo K, Downward J (2007) Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell 129:957–968

    Article  PubMed  CAS  Google Scholar 

  • Heid I, Lubeseder-Martellato C, Sipos B, Mazur PK, Lesina M, Schmid RM, Siveke JT (2011) Early requirement of RAC1 in a mouse model of pancreatic cancer. Gastroenterology 141:719–730.e7

    Article  PubMed  CAS  Google Scholar 

  • Herranz N, Pasini D, Díaz VM, Francí C, Gutierrez A, Dave N, Escrivà M, Hernandez-Muñoz I, Di Croce L, Helin K, García de Herreros A, Peiró S (2008) Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol Cell Biol 28:4772–4781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hobbs G, Der C, Rossman K (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287–1292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang H, Daniluk J, Liu Y, Chu J, Li Z, Ji B, Logsdon CD (2014) Oncogenic K-Ras requires activation for enhanced activity. Oncogene 33(4):532–535

    Article  PubMed  CAS  Google Scholar 

  • Hüsemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E, Forni G, Eils R, Fehm T, Riethmüller G, Klein CA (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13:58–68

    Article  PubMed  CAS  Google Scholar 

  • Jiang HL, Sun HF, Gao SP, Li LD, Hu X, Wu J, Jin W (2015) Loss of RAB1B promotes triple-negative breast cancer metastasis by activating TGF-β/SMAD signaling. Oncotarget 6(18):16352–16365

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanda M, Matthaei H, Wu J, Hong SM, Yu J, Borges M, Hruban RH, Maitra A, Kinzler K, Vogelstein B, Goggins M (2012) Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology 142(4):730–733 e9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaplan DR, Morrison DK, Wong G, McCormick F, Williams LT (1990) PDGF beta-receptor stimulates tyrosine phosphorylation of GAP and association of GAP with a signaling complex. Cell 61:125–133

    Article  PubMed  CAS  Google Scholar 

  • Karaguni IM, Herter P, Debruyne P, Chtarbova S, Kasprzynski A, Herbrand U, Ahmadian MR, Glüsenkamp KH, Winde G, Mareel M, Möröy T, Müller O (2002) The new sulindac derivative IND 12 reverses RAS-induced cell transformation. Cancer Res 62:1718–1723

    PubMed  CAS  Google Scholar 

  • Kato K, Cox AD, Hisaka MM, Graham SM, Buss JE, Der CJ (1992) Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity. Proc Natl Acad Sci U S A 89(14):6403–6407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kent OA, Mendell JT, Rottapel R (2016) Transcriptional regulation of miR-31 by oncogenic K-RAS mediates metastatic phenotypes by repressing RASA1. Mol Cancer Res 14:267–277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim KLZ, Hay ED (2002) Direct evidence for a role of β-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol Int 26:463–476

    Article  PubMed  CAS  Google Scholar 

  • Kim RK, Suh Y, Yoo KC, Cui YH, Kim H, Kim MJ, Gyu Kim I, Lee SJ (2015) Activation of K-RAS promotes the mesenchymal features of basal-type breast cancer. Exp Mol Med 47:e137

    Article  PubMed  PubMed Central  Google Scholar 

  • Kissil JL, Walmsley MJ, Hanlon L, Haigis KM, Bender Kim CF, Sweet-Cordero A, Eckman MS, Tuveson DA, Capobianco AJ, Tybulewicz VL, Jacks T (2007) Requirement for RAC1 in a KRAS induced lung cancer in the mouse. Cancer Res 67:8089–8094

    Article  PubMed  CAS  Google Scholar 

  • Koh M, Woo Y, Valiathan RR, Jung HY, Park SY, Kim YN, Kim HR, Fridman R, Moon A (2015) Discoidin domain receptor 1 is a novel transcriptional target of ZEB1 in breast epithelial cells undergoing H-Ras-induced epithelial to mesenchymal transition. Int J Cancer 136(6):508–520

    Article  CAS  Google Scholar 

  • Kolch W, Heidecker G, Lloyd P, Rapp UR (1991) Raf-1 protein kinase is required for growth of induced NIH/3T3 cells. Nature 349(6308):426–428

    Article  PubMed  CAS  Google Scholar 

  • Kondoh H, Kamachi Y (2010) SOX-partner code for cell specification: regulatory target selection and underlying molecular mechanisms. Int J Biochem Cell Biol 42:391–399

    Article  PubMed  CAS  Google Scholar 

  • Krebs AM, Mitschke J, LasierraLosada M, Schmalhofer O, Boerries M, Busch H, Boettcher M, Mougiakakos D, Reichardt W, Bronsert P, Brunton VG, Pilarsky C, Winkler TH, Brabletz S, Stemmler MP, Brabletz T (2017) The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol 19(5):518–529

    Article  PubMed  CAS  Google Scholar 

  • Lake D, Correa SA, Muller J (2016) Negative feedback regulation of the ERK1/2 MAPK pathway. Cell Mol Life Sci 73:4397–4413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lambert JM, Lambert QT, Reuther GW, Malliri A, Siderovski DP, Sondek J, Collard JG, Der CJ (2002) Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism. Nat Cell Biol 4(8):621–625

    Article  PubMed  CAS  Google Scholar 

  • Lange-Carter CA, Johnson GL (1994) Ras-dependent growth factor regulation of MEK kinase in PC12 cells. Science 265(5177):1458–1461

    Article  PubMed  CAS  Google Scholar 

  • Lee JM, Dedhar S, Kalluri R, Thompson EW (2006) The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172(7):973–981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lim KH, Counter CM (2005) Reduction in the requirement of oncogenic RAS signaling to activation of PI3K/AKT pathway during tumor maintenance. Cancer Cell 8(5):381–392

    Article  PubMed  CAS  Google Scholar 

  • Lim KH, O'Hayer K, Adam SJ, Kendall SD, Campbell PM, Der CJ, Counter CM (2006) Divergent roles for RALA and RALB in malignant growth of human pancreatic carcinoma cells. Curr Biol 16:2385–2394

    Article  PubMed  CAS  Google Scholar 

  • Lin SR, Tsai JH, Yang YC, Lee SC (1998) Mutations of K-RAS oncogene in human adrenal tumours in Taiwan. Br J Cancer 77:1060–1065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin X, Chen L, Yao Y, Zhao R, Cui X, Chen J, Hou K, Zhang M, Su F, Chen J, Song E (2015) CCL18-mediated down-regulation of miR98 and miR27b promotes breast cancer metastasis. Oncotarget 6(24):20485–20499

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Sánchez-Tilló E, Lu X, Huang L, Clem B, Telang S, Jenson AB, Cuatrecasas M, Chesney J, Postigo A, Dean DC (2014) The ZEB1 transcription factor acts in a negative feedback loop with miR200 downstream of Ras and Rb1 to regulate Bmi1 expression. J Biol Chem 289(7):4116–4125

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Zhang M, Qian J, Bao M, Meng X, Zhang S, Zhang L, Zhao R, Li S, Cao Q, Li P, Ju X, Lu Q, Li J, Shao P, Qin C, Yin C (2015) miR-134 functions as a tumor suppressor in cell proliferation and epithelial-to-mesenchymal transition by targeting K-RAS in renal cell carcinoma cells. DNA Cell Biol 34(6):429–436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu X, Guo H, Chen X, Xiao J, Zou Y, Wang W, Chen Q (2016) Effect of RhoC on the epithelial-mesenchymal transition process induced by TGF-β1 in lung adenocarcinoma cells. Oncol Rep 36(6):3105–3112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lusk JB, Lam VY, Tolwinski NS (2017) Epidermal growth factor pathway signaling in drosophila embryogenesis: tools for understanding cancer. Cancers (Basel) 9(2):Pii: E16

    Article  CAS  Google Scholar 

  • Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688

    Article  PubMed  CAS  Google Scholar 

  • Marchetti A, Colletti M, Cozzolino AM, Steindler C, Lunadei M, Mancone C, Tripodi M (2008) RK5/MAPK is activated by TGFβ in hepatocytes and required for the GSK-3β-mediated snail protein stabilization. Cell Signal 20(11):2113–2118

    Article  PubMed  CAS  Google Scholar 

  • Maruta H, Burgess AW (1996) Regulation of the Ras signaling network. BioEssays 16(7):139–180

    Google Scholar 

  • McKay MM, Morrison DK (2007) Integrating signals from RTKs to ERK/MAPK. Oncogene 26(22):3113–3121

    Article  PubMed  CAS  Google Scholar 

  • McKenna WG, Weiss MC, Endlich B, Ling CC, Bakanauskas VJ, Kelsten ML, Muschel RJ (1990) Synergistic effect of the v-myc oncogene with H-RAS on radioresistance. Cancer Res 50(1):97–102

    PubMed  CAS  Google Scholar 

  • Medarde AF, Santos E (2011) Ras in cancer and developmental diseases. Genes and. Cancer 2(3):344–335

    Google Scholar 

  • Miller AC, Kariko K, Myers CE, Clark EP, Samid D (1993) Increased radioresistance of EJ Ras-transformed human osteosarcoma cells and its modulation by lovastatin, an inhibitor of p21 Ras isoprenylation. Int J Cancer 53(3):302–307

    Article  PubMed  CAS  Google Scholar 

  • Miyakura Y, Sugano K, Fukayama N, Konishi F, Nagai H (2002) Concurrent mutations of K-RAS oncogene at codons 12 and 22 in colon cancer. Jpn J Clin Oncol 32:219–221

    Article  PubMed  Google Scholar 

  • Miyazono K (2009) Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci 85(8):314–323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morrison DK, Cutler RE (1997) The complexity of Raf-1 regulation. Curr Opin Cell Biol 9(2):174–179

    Article  PubMed  CAS  Google Scholar 

  • Murillo MM, Zelenay S, Nye E, Castellano E, Lassailly F, Stamp G, Downward J (2014) RAS interaction with PI3K p110a is required for tumorinducedangiogenesis. J Clin Invest 124:3601–3611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naguib A, Wilson CH, Adams DJ, Arends MJ (2011) Activation of K-RAS by co-mutation of codons 19 and 20 is transforming. J Mol Signal 6:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oktay M, Wary KK, Dans M, Birge RB, Giancotti FG (1999) Integrin-mediated activation of focal adhesion kinase is required for signaling to Jun NH2-terminal kinase and progression through the G1 phase of the cell cycle. J Cell Biol 145(7):1461–1469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ouerhani S, Bougatef K, Soltani I, Elgaaied IBA, Abbes S, Menif S (2013) The prevalence and prognostic significance of K-RAS mutation in bladder cancer, chronic myeloid leukemia and colorectal cancer. Mol Biol Rep 40:4109–4114

    Article  PubMed  CAS  Google Scholar 

  • Peschard P, McCarthy A, Leblanc-Dominguez V, Yeo M, Guichard S, Stamp G, Marshall CJ (2012) Genetic deletion of RALA and RALB small GTPases reveals redundant functions in development and tumorigenesis. Curr Biol 22:2063–2068

    Article  PubMed  CAS  Google Scholar 

  • Prior I, Lewis P, Mattos C (2012) A comprehensive survey of Ras mutations in cancer. Cancer Res 72(10):2457–2467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qi L, Sun B, Liu Z, Cheng R, Li Y, Zhao X (2014) Wnt3a expression is associated with epithelial-mesenchymal transition and promotes colon cancer progression. J Exp Clin Cancer Res 33(1):10

    Article  Google Scholar 

  • Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70(3):401–410

    Article  PubMed  CAS  Google Scholar 

  • Rinehart-Kim J, Johnston M, Birrer M, Bos T (2000) Alterations in the gene expression profile of MCF-7 breast tumor cells in response to c-Jun. Int J Cancer 88:180–190

    Article  PubMed  CAS  Google Scholar 

  • Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68:320–344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rozengurt E (2007) Mitogenic signaling pathways induced by G protein-coupled receptors. J Cell Physiol 213(3):589–602

    Article  PubMed  CAS  Google Scholar 

  • Saitoh M, Endo K, Furuya S, Minami M, Fukasawa A, Imamura T, Miyazawa K (2016) STAT3 integrates cooperative Ras and TGF-β signals that induce snail expression. Oncogene 35(8):1049–1057

    Article  PubMed  CAS  Google Scholar 

  • Santamaria PG, Moreno-Bueno G, Portillo F, Cano A (2017) EMT: present and future in clinical oncology. Mol Oncol 11(7):718–738

    Article  PubMed  PubMed Central  Google Scholar 

  • Saridaki Z, Weidhaas JB, Lenz HJ, Laurent-Puig P, Jacobs B, de Schutter J, de Roock W, Salzman DW, Zhang W, Yang D, Pilati C, Bouché O, Piessevaux H, Tejpar S (2014) A let-7 microRNA-binding site polymorphism in K-RAS predicts improved outcome in patients with metastatic colorectal cancer treated with salvage cetuximab/panitumumab monotherapy. Clin Cancer Res 20:4499–4510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaap D, van der Wal J, Howe LR, Marshall CJ, van Blitterswijk WJ (1993) A dominant-negative mutant of raf blocks mitogen-activated protein kinase activation by growth factors and oncogenic p21Ras. J Biol Chem 268(27):20232–20236

    PubMed  CAS  Google Scholar 

  • Shields MA, Ebine K, Sahai V, Kumar K, Siddiqui K, Hwang RF, Grippo PJ, Munshi HG (2013). Snail cooperates with KrasG12D to promote pancreatic fibrosis. Mol Cancer Res 2013 11(9):1078–1087

  • Simanshu DK, Nissley DV, McCormick F (2017) RAS proteins and their regulators in human disease. Cell 170(1):17–33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh A, Greninger P, Rhodes D, Koopman L, Violette S, Bardeesy N, Settleman J (2009) A gene expression signature associated with “K-RAS addiction” reveals regulators of EMT and tumor cell survival. Cancer Cell 15(6):489–500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sklar MD (1988) The Ras oncogenes increase the intrinsic resistance of NIH 3T3 cells to ionizing radiation. Science 239(4840):645–647

    Article  PubMed  CAS  Google Scholar 

  • Smith G, Bounds R, Wolf H, Steele RJC, Carey FA, Wolf CR (2010) Activating K-RAS mutations outwith ‘hotspot’ codons in sporadic colorectal tumours – implications for personalised cancer medicine. Br J Cancer 102:693–703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song C, Satoh T, Edamatsu H, Wu D, Tadano M, Gao X, Kataoka T (2002) Differential roles of Ras and Rap1 in growth factor-dependent activation of phospholipase C epsilon. Oncogene 21(53):8105–8113

    Article  PubMed  CAS  Google Scholar 

  • Stephen AG, Esposito D, Bagni RK, McCormick F (2002) Dragging RAS back in the ring. Cancer Cell 25:272–281

    Article  CAS  Google Scholar 

  • Stinson S, Lackner MR, Adai AT, Yu N, Kim HJ, O'Brien C, Spoerke J, Jhunjhunwala S, Boyd Z, Januario T, Newman RJ, Yue P, Bourgon R, Modrusan Z, Stern HM, Warming S, de Sauvage FJ, Amler L, Yeh RF, Dornan D (2011) miR-221/222 targeting of trichorhinophalangeal 1 (TRPS1) promotes epithelial-to-mesenchymal transition in breast cancer. Sci Signal l4(186):pt5

    Google Scholar 

  • Tall GG, Barbieri MA, Stahl PD, Horazdovsky BF (2001) Ras-activated endocytosis is mediated by the Rab5 guanine nucleotide exchange activity of RIN1. Dev Cell 1(1):73–82

    Article  PubMed  CAS  Google Scholar 

  • Tape CJ, Ling S, Dimitriadi M, McMahon KM, Worboys JD, Leong HS, Norrie IC, Miller CJ, Poulogiannis G, Lauffenburger DA, Jørgensen C (2016) Oncogenic KRAS regulates tumor cell signaling via stromal reciprocation. Cell 165(4):910–920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tothova Z, Ebert BL (2017) Doubling down on mutant RAS can MEK or break leukemia. Cell 168(5):749–750

    Article  PubMed  CAS  Google Scholar 

  • Trahey M, McCormick F (1987) A cytoplasmic protein stimulates normal N-RASp21 GTPase, but does not affect oncogenic mutants. Science 238(4826):542–545

    Article  PubMed  CAS  Google Scholar 

  • Tulchinsky E, Pringle JH, Caramel J, Ansieau S (2014) Plasticity of melanoma and EMT-TF reprogramming. Oncotarget 5(1):1–2

    Article  PubMed  Google Scholar 

  • Varras MN, Koffa M, Koumantakis E, Ergazaki M, Protopapa E, Michalas S, Spandidos DA (1996) Ras gene mutations in human endometrial carcinoma. Oncology 53(6):505–510

    Article  PubMed  CAS  Google Scholar 

  • Verde P, Casalino L, Talotta F, Yaniv M, Weitzman JB (2007) Deciphering AP-1 function in tumorigenesis: fra-ternizing on target promoters. Cell Cycle 6(21):2633–2639

    Article  PubMed  CAS  Google Scholar 

  • Vos MD, Ellis CA, Elam C, Ulku AS, Taylor BJ, Clark GJ (2003a) RASSF2 is a novel K-RAS-specific effector and potential tumor suppressor. J Biol Chem 278(30):28045–28051

    Article  PubMed  CAS  Google Scholar 

  • Vos MD, Martinez A, Ellis CA, Vallecorsa T, Clark GJ (2003b) The proapoptotic Ras effector Nore1 may serve as a Ras-regulated tumor suppressor in the lung. J Biol Chem 278(24):21938–21943

    Article  PubMed  CAS  Google Scholar 

  • Wanami LS, Chen HY, Peiró S, García de Herreros A, Bachelder RE (2008) Vascular endothelial growth factor-a stimulates snail expression in breast tumor cells: implications for tumor progression. Exp Cell Res 314(13):2448–2453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Welsch ME, Kaplan A, Chambers JM, Stokes ME, Bos PH, Zask A, Zhang Y, Sanchez-Martin M, Badgley MA, Huang CS, Tran TH, Akkiraju H, Brown LM, Nandakumar R, Cremers S, Yang WS, Tong L, Olive KP, Ferrando A, Stockwell BR (2017) Multivalent small-molecule pan-RAS inhibitors. Cell 168(5):878–889.e29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whyte DB, Kirschmeier P, Hockenberry TN, Nunez-Oliva I, James L, Catino JJ, Bishop WR, Pai JK (1997) K- and N-RAS are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J Biol Chem 272:14459–14464

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi J, Miyamoto Y, Tanoue A, Shooter EM, Chan JR (2005) Ras activation of a Rac1 exchange factor, Tiam1, mediates neurotrophin-3- induced Schwann cell migration. Proc Natl Acad Sci U S A 102(41):14889–14894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan M, Dai T, Deak JC, Kyriakis JM, Zon LI, Woodgett JR, Templeton DJ (1994) Activation of stress-activated protein kinase by MEKK1 phosphorylation of its activator SEK1. Nature 372(6508):798–800

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Lin C, Liu ZR (2006) p68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing Axin from beta-catenin. Cell 127(1):139–155

    Article  PubMed  Google Scholar 

  • Yang F, Sun L, Li Q, Han X, Lei L, Zhang H, Shang Y (2012) SET8 promotes epithelial-mesenchymal transition and confers TWIST dual transcriptional activities. EMBO J 31:110–123

    Article  PubMed  CAS  Google Scholar 

  • Ye K, Wang S, Zhang H, Han H, Ma B, Nan W (2017) Long noncoding RNA GAS5 suppresses cell growth and epithelial-mesenchymal transition in osteosarcoma by regulating the miR-221/ARHI pathway. J Cell Biochem. https://doi.org/10.1002/jcb.26145

  • Zhadanov AB, Provance DW Jr, Speer CA, Coffin JD, Goss D, Blixt JA, Reichert CM, Mercer JA (1999) Absence of the tight junctional protein AF-6 disrupts epithelial cell–cell junctions and cell polarity during mouse development. Curr Biol l9(16):880–888

    Article  Google Scholar 

  • Zhang C, Spevak W, Zhang Y, Burton EA, Ma Y, Habets G, Zhang J, Lin J, Ewing T, Matusow B, Tsang G, Marimuthu A, Cho H, Wu G, Wang W, Fong D, Nguyen H, Shi S, Womack P, Nespi M, Shellooe R, Carias H, Powell B, Light E, Sanftner L, Walters J, Tsai J, West BL, Visor G, Rezaei H, Lin PS, Nolop K, Ibrahim PN, Hirth P, Bollag G (2015) RAF inhibitors that evade paradoxical MAPK pathway activation. Nature 526:583–586

    Article  PubMed  CAS  Google Scholar 

  • Zhang K, Myllymäki SM, Gao P, Devarajan R, Kytölä V, Nykter M, Wei GH, Manninen A (2017) Oncogenic K-Ras upregulates ITGA6 expression via FOSL1 to induce anoikis resistance and synergizes with αV-class integrins to promote EMT. Oncogene 36(41):5681–5694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou Y, Prakash P, Liang H, Cho KJ, Gorfe AA, Hancock JF (2017) Lipid-sorting specificity encoded in K-Ras membrane anchor regulates signal output. Cell 168:239–251

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Zhang J, Xu F, Xu E, Ruan W, Ma Y, Huang Q, Lai M (2015) IGFBP-rP1 suppresses epithelial-mesenchymal transition and metastasis in colorectal cancer. Cell Death Dis 6:e1695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

One of the co-authors, KT is thankful to University Grants Commission (UGC), Govt. of India for providing research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minal Garg.

Ethics declarations

Conflict-of-interests

Authors disclose no potential conflict-of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, K., Garg, M. Mechanistic regulation of epithelial-to-mesenchymal transition through RAS signaling pathway and therapeutic implications in human cancer. J. Cell Commun. Signal. 12, 513–527 (2018). https://doi.org/10.1007/s12079-017-0441-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-017-0441-3

Keywords

Navigation