Skip to main content
Log in

Sulfatase-1 knockdown promotes in vitro and in vivo aggressive behavior of murine hepatocarcinoma Hca-P cells through up-regulation of mesothelin

  • Research Article
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Our previous study (Oncotarget 2016; 7:46) demonstrated that the over-expression of sulfatase-1 in murine hepatocarcinoma Hca-F cell line (a murine HCC cell with lymph node metastatic [LNM] rate of >75%) downregulates mesothelin and leads to reduction in lymphatic metastasis, both in vitro and in vivo. In current work, we investigated the effects of Sulf-1 knockdown on mesothelin (Msln) and it’s effects on the in vitro cell proliferation, migration, invasion, and in vivo tumor growth and LNM rate for Hca-P cells (a murine HCC cell with LNM rate of <25%). Western blotting and qRT-PCR assay indicated that both in vitro and in vivo Sulf-1 was down-regulated by 75% and 68% and led to up regulation of Msln by 55% in shRNA-transfected-Sulf-1-Hca-P cells compared with Hca-P and nonspecific sequence control plasmid transfected Hca-P cell (shRNA-Nc-Hca-P). The in vitro proliferation, migration and invasion potentials were significantly enhanced following Sulf-1 stable down-regulation. In addition, Sulf-1 knock-down significantly promoted tumor growth and increased LNM rates of shRNA-Sulf-1-Hca-P-transplanted mice by 78.6% (11 out of 14 lymph nodes were positive of cancer). Consistent with our previous work, we confirmed that Sulf-1 plays an important role in hepatocarcinoma cell proliferation, migration, invasion and metastasis. The interaction between Sulf-1 and Msln is a potential therapeutic target in the development of liver cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akutsu N et al (2010) Association of glypican-3 expression with growth signaling molecules in hepatocellular carcinoma. World J Gastroenterol 16(28):3521–3528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bao L et al (2013) MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways. Cancer Lett 337(2):226–236

    Article  PubMed  CAS  Google Scholar 

  • Bayoglu IV et al (2015) Prognostic value of mesothelin expression in patients with triple negative and HER2-positive breast cancers. Biomed Pharmacother 70:190–195

    Article  PubMed  CAS  Google Scholar 

  • Chang M-C et al (2009) Mesothelin inhibits paclitaxel-induced apoptosis through the PI3K pathway. Biochem J 424:449–458

    Article  PubMed  CAS  Google Scholar 

  • Chuang PT, McMahon AP (1999) Vertebrate hedgehog signalling modulated by induction of a hedgehog-binding protein. Nature 397(6720):617–621

    Article  PubMed  CAS  Google Scholar 

  • Chuang P-T, Kawcak T, McMahon AP (2003) Feedback control of mammalian hedgehog signaling by the hedgehog-binding protein, Hip1, modulates Fgf signaling during branching morphogenesis of the lung. Genes Dev 17(3):342–347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui XN et al (2006) Identification of differentially expressed genes in mouse hepatocarcinoma ascites cell line with low potential of lymphogenous metastasis. World J Gastroenterol 12(42):6893–6897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demir M et al (2016) Evaluation of new biomarkers in the prediction of malignant mesothelioma in subjects with environmental asbestos exposure. Lung 194(3):409–417

    Article  PubMed  CAS  Google Scholar 

  • Dhanasekaran R et al (2015) Activation of the transforming growth factor-β/SMAD transcriptional pathway underlies a novel tumor-promoting role of sulfatase 1 in hepatocellular carcinoma. Hepatology 61(4):1269–1283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dieterich LC, Detmar M (2015) Tumor lymphangiogenesis and new drug development. Adv Drug Deliv Rev 99:148–160

    Article  PubMed  CAS  Google Scholar 

  • Gibot L et al (2016) Cell-based approach for 3D reconstruction of lymphatic capillaries in vitro reveals distinct functions of HGF and VEGF-C in lymphangiogenesis. Biomaterials 78:129–139

    Article  PubMed  CAS  Google Scholar 

  • Gopal G et al (2012) Endo-sulfatase Sulf-1 protein expression is down-regulated in gastric cancer. Asian Pac J Cancer Prev: APJCP 13(2):641–646 http://www.ncbi.nlm.nih.gov/pubmed/22524839 Accessed 20 March 2017

    Article  PubMed  Google Scholar 

  • Hou L et al (2001) Molecular mechanism about lymphogenous metastasis of hepatocarcinoma cells in mice. World J Gastroenterol 7(4):532–536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huangfu D, Anderson KV (2006) Signaling from Smo to ci/Gli: conservation and divergence of hedgehog pathways from drosophila to vertebrates. Development 133(1):3–14

    Article  PubMed  CAS  Google Scholar 

  • Katoh Y, Katoh M (2009) Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol Med 9(7):873–886

    Article  PubMed  CAS  Google Scholar 

  • Khurana A et al (2011) HSulf-1 modulates FGF-2 and hypoxia mediated migration and invasion of breast cancer cells. Cancer Res 71(6):2152–2161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lai J, Chien J, Staub J, Avula R, Greene EL, Matthews TA, Smith DI, Kaufmann SH, Roberts LR, Shridhar V (2003) Loss of HSulf-1 up-regulates heparin-binding growth factor signaling in cancer. J Biol Chem 278(25):23107–23117

    Article  PubMed  CAS  Google Scholar 

  • Lai JP, Chien J, Strome SE, Staub J, Montoya DP (2004a) HSulf-1 modulates HGF-mediated tumor cell invasion and signaling in head and neck squamous carcinoma. Oncogene 23(7):1439–1447

    Article  PubMed  CAS  Google Scholar 

  • Lai, J. et al., 2004b. HSulf-1 modulates HGF-mediated tumor cell invasion and signaling in head and neck squamous carcinoma., (October 2003), pp. 1439–1447

  • Lai JP et al (2008) The tumor suppressor function of human sulfatase 1 (SULF1) in carcinogenesis. J Gastrointest Cancer 39:149–158

    Article  PubMed  CAS  Google Scholar 

  • Li HF, Ling MY, Xie Y, Xie H (1998) Establishment of a lymph node metastatic model of mouse hepatocellular carcinoma Hca-F cells in C3H/Hej mice. Oncol Res 10(11–12):569–573

    PubMed  CAS  Google Scholar 

  • Li J et al (2005) Enhanced levels of Hsulf-1 interfere with heparin-binding growth factor signaling in pancreatic cancer. Mol Cancer 4:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J et al (2011) HSulf-1 inhibits cell proliferation and invasion in human gastric cancer. Cancer Sci 102(10):1815–1821

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Fu X, Ji W, Liu K, Bao L, Yan Y, Wu M, Yang J, Su C (2013) Human sulfatase-1 inhibits the migration and proliferation of SMMC-7721 hepatocellular carcinoma cells by downregulating the growth factor signaling. Hepatol Res 43(5):516–525

    Article  PubMed  CAS  Google Scholar 

  • Liu L et al (2014) hSulf-1 inhibits cell proliferation and migration and promotes apoptosis by suppressing stat3 signaling in hepatocellular carcinoma. Oncol Lett 7:963–969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lou X et al (2016) Human sulfatase 1 exerts anti-tumor activity by inhibiting the AKT/CDK4 signaling pathway in melanoma. Oncotarget 7(51):84486–84495

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma H-Y et al (2011) HSulf-1 suppresses cell growth and down-regulates hedgehog signaling in human gastric cancer cells. Oncol Lett 2(6):1291–1295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahmoud S et al (2016) Over expression of sulfatase-1 in murine hepatocarcinoma Hca-F cell line downregulates mesothelin and leads to reduction in lymphatic metastasis, both in vitro and in vivo. Oncotarget 7:46

    Article  Google Scholar 

  • Mondal S et al (2015) HSulf-1 deficiency dictates a metabolic reprograming of glycolysis and TCA cycle in ovarian cancer. Oncotarget 6(32):33705–33719

    Article  PubMed  PubMed Central  Google Scholar 

  • Narita K, Chien J, Mullany SA, Staub J, Qian X, Lingle WL, Shridhar V (2007) Loss of HSulf-1 expression enhances autocrine signaling mediated by amphiregulin in breast cancer. J Biol Chem 282(19):14413–14420

    Article  PubMed  CAS  Google Scholar 

  • Nathanson SD (2003) Insights into the mechanisms of lymph node metastasis, pp. 413–423

  • Østerlund T, Kogerman P (2006) Hedgehog signalling: how to get from Smo to ci and Gli. Trends Cell Biol 16(4):176–180

    Article  PubMed  CAS  Google Scholar 

  • Pascale RM, Calvisi DF, Feo F (2016) Sulfatase 1: a new Jekyll and Hyde in hepatocellular carcinoma? Transl Gastroenterol Hepatol 1:43–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Prieve, M.G. & Moon, R.T., 2003. Stromelysin-1 and mesothelin are differentially regulated by Wnt-5a and Wnt-1 in C57mg mouse mammary epithelial cells., 10, pp. 1–10

  • Roy D et al (2014) Loss of HSulf-1 promotes altered lipid metabolism in ovarian cancer. Cancer Metab 2(1):13

    Article  PubMed  PubMed Central  Google Scholar 

  • Song B, Tang JW, Wang B, Cui XN, Hou L, Sun L, Mao LM, Zhou CH, Du Y, Wang LH, Wang HX, Zheng RS, Sun L (2005) Identify lymphatic metastasis-associated genes in mouse hepatocarcinoma cell lines using gene chip. World J Gastroenterol 11(10):1463–1472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song PP et al (2016) Controversies regarding and perspectives on clinical utility of biomarkers in hepatocellular carcinoma. World J Gastroenterol 22(1):262–274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suvendu Das MS (2008) Lymphatic vessel activation in cancer. Ann N Y Acad Sci 1131:235–241

    Article  PubMed  CAS  Google Scholar 

  • Szatmári T, Ötvös R, Hjerpe A, Dobra K (2015) Syndecan-1 in cancer: implications for cell signaling, differentiation, and prognostication. Dis Markers 2015:13

    Article  CAS  Google Scholar 

  • Tang Z, Qian M, Ho M (2013) The role of mesothelin in tumor progression and targeted therapy. Anti Cancer Agents Med Chem 13(2):276–280

    Article  CAS  Google Scholar 

  • Torre LA et al (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108

    Article  PubMed  Google Scholar 

  • Vecsler M, Lazar I, Tzur A (2013) Using standard optical flow cytometry for synchronizing proliferating cells in the G1 phase. PloS One 8(12):e83935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y et al (2012) Mesothelin promotes invasion and metastasis in breast cancer cells. J Int Med Res 40:2109–2116

    Article  PubMed  CAS  Google Scholar 

  • Yang XP et al (2015) Human sulfatase-1 improves the effectiveness of cytosine deaminase suicide gene therapy with 5-fluorocytosine treatment on hepatocellular carcinoma cell line hepg2 in vitro and in vivo. Chin Med J 128(10):1384–1390

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshimatsu Y, Miyazaki H, Watabe T (2016) Roles of signaling and transcriptional networks in pathological lymphangiogenesis ☆. Adv Drug Deliv Rev 99:161–171

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Newman DR, Sannes PL (2012) HSULF-1 inhibits ERK and AKT signaling and decreases cell viability in vitro in human lung epithelial cells. Respir Res 13(1):69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supports by grants from the National Natural Science Foundation of China [No. 81071725 and No. 30772468]; and the Financial Department of Liaoning Province [Nos. 20,121,203]. We would like to thank the Department of Pathology and the Key Lab for Tumor Metastasis and Intervention of Liaoning Province, as well as, and the Chinese Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwu Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, S.A., Ibrahim, M.M., Musa, A.H. et al. Sulfatase-1 knockdown promotes in vitro and in vivo aggressive behavior of murine hepatocarcinoma Hca-P cells through up-regulation of mesothelin. J. Cell Commun. Signal. 12, 603–613 (2018). https://doi.org/10.1007/s12079-017-0411-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-017-0411-9

Keywords

Navigation