Skip to main content
Log in

CCN2 induces cellular senescence in fibroblasts

  • RESEARCH ARTICLE
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

The expression of Ccn2 (CTGF) has been linked to fibrosis in many tissues and pathologies, although its activities in fibroblastic cells and precise mechanism of action in fibrogenesis are still controversial. Here, we showed that CCN2 can induce cellular senescence in fibroblasts both in vitro and in vivo, whereupon senescent cells express an anti-fibrotic “senescence-associated secretory phenotype” (SASP) that includes upregulation of matrix metalloproteinases and downregulation of collagen. Mechanistically, CCN2 induces fibroblast senescence through integrin α6β1-mediated accumulation of reactive oxygen species, leading to activation of p53 and induction of p16INK4a. In cutaneous wound healing, Ccn2 expression is highly elevated only during the initial inflammatory phase and quickly declines thereafter to a low level during the proliferation and maturation phases of healing when myofibroblasts play a major role. Consistent with this expression kinetics, knockdown of Ccn2 has little effect on the rate of wound closure, formation of senescent cells, or collagen content of the wounds. However, application of purified CCN2 protein on cutaneous wounds leads to induction of senescent cells, expression of SASP, and reduction of collagen content. These results show that CCN2 can induce cellular senescence in fibroblasts and is capable of exerting an anti-fibrotic effect in a context-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Babic AM, Chen C-C, Lau LF (1999) Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin αvβ3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol 19:2958–2966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borkham-Kamphorst E, Schaffrath C, Van de Leur E, Haas U, Tihaa L, Meurer SK, Nevzorova YA, Liedtke C, Weiskirchen R (2014) The anti-fibrotic effects of CCN1/CYR61 in primary portal myofibroblasts are mediated through induction of reactive oxygen species resulting in cellular senescence, apoptosis and attenuated TGF-beta signaling. Biochim Biophys Acta 1843:902–914

    Article  CAS  PubMed  Google Scholar 

  • Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75:685–705

    Article  CAS  PubMed  Google Scholar 

  • Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740

    Article  CAS  PubMed  Google Scholar 

  • Catalano A, Rodilossi S, Caprari P, Coppola V, Procopio A (2005) 5-lipoxygenase regulates senescence-like growth arrest by promoting ROS-dependent p53 activation. EMBO J 24:170–179

    Article  CAS  PubMed  Google Scholar 

  • Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, Janakiraman K, Sharpless NE, Ding S, Feng W, Luo Y, Wang X, Aykin-Burns N, Krager K, Ponnappan U, Hauer-Jensen M, Meng A, Zhou D (2016) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 22:78–83

    Article  CAS  PubMed  Google Scholar 

  • Chen C-C, Lau LF (2009) Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol 41:771–783

    Article  CAS  PubMed  Google Scholar 

  • Chen C-C, Chen N, Lau LF (2001) The angiogenic factors Cyr61 and CTGF induce adhesive signaling in primary human skin fibroblasts. J Biol Chem 276:10443–10452

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Young JL, Monzon RI, Chen N, Todorovic V, Lau LF (2007) Cytotoxicity of TNFalpha is regulated by integrin-mediated matrix signaling. EMBO J 26:1257–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collado M, Blasco MA, Serrano M (2007) Cellular senescence in cancer and aging. Cell 130:223–233

    Article  CAS  PubMed  Google Scholar 

  • Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868

    Article  CAS  PubMed  Google Scholar 

  • Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O (2009) Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4:1798–1806

    Article  CAS  PubMed  Google Scholar 

  • Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, Laberge RM, Vijg J, Van Steeg H, Dolle ME, Hoeijmakers JH, de Bruin A, Hara E, Campisi J (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31:722–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards CA, O’Brien J (1980) Modified assay for determination of hydroxyproline in tissue hydrolyzate. Clin Chim Acta 104:161–167

    Article  CAS  PubMed  Google Scholar 

  • Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321

    Article  CAS  PubMed  Google Scholar 

  • Hall-Glenn F, Lyons KM (2011) Roles for CCN2 in normal physiological processes. Cell Mol Life Sci 68:3209–3217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivkovic S, Yoon BS, Popoff SN, Safadi FF, Libuda DE, Stephenson RC, Daluiski A, Lyons KM (2003) Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130:2779–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jun JI, Lau LF (2010a) Cellular senescence controls fibrosis in wound healing. Aging (Albany NY) 2:627–631

    Article  CAS  Google Scholar 

  • Jun JI, Lau LF (2010b) The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol 12:676–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jun JI, Lau LF (2011) Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov 10:945–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jun JI, Kim KH, Lau LF (2015) The matricellular protein ccn1 mediates neutrophil efferocytosis in cutaneous wound healing. Nat Commun 6:7386. doi:10.1038/ncomms8386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juric V, Chen CC, Lau LF (2009) Fas-mediated apoptosis is regulated by the extracellular matrix protein CCN1 (CYR61) in vitro and in vivo. Mol Cell Biol 29:3266–3279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KH, Chen CC, Monzon RI, Lau LF (2013) The matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic myofibroblasts. Mol Cell Biol 33:2078–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kireeva ML, Latinkic BV, Kolesnikova TV, Chen C-C, Yang GP, Abler AS, Lau LF (1997) Cyr61 and Fisp12 are both signaling cell adhesion molecules: comparison of activities, metablism, and localization during development. Exp Cell Res 233:63–77

    Article  CAS  PubMed  Google Scholar 

  • Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, Yee H, Zender L, Lowe SW (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134:657–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota S, Takigawa M (2015) Cellular and molecular actions of CCN2/CTGF and its role under physiological and pathological conditions. Clin Sci (Lond) 128:181–196

    Article  CAS  Google Scholar 

  • Kurundkar AR, Kurundkar D, Rangarajan S, Locy ML, Zhou Y, Liu RM, Zmijewski J, Thannickal VJ (2016) The matricellular protein CCN1 enhances TGF-beta1/SMAD3-dependent profibrotic signaling in fibroblasts and contributes to fibrogenic responses to lung injury. FASEB J 30:2135–2150

    Article  CAS  PubMed  Google Scholar 

  • Lau LF (2011) CCN1/CYR61: the very model of a modern matricellular protein. Cell Mol Life Sci 68:3149–3163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CH, Shah B, Moioli EK, Mao JJ (2010) CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model. J Clin Invest 120:3340–3349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leu S-J, Lam SC-T, Lau LF (2002) Proangiogenic activities of CYR61 (CCN1) mediated through integrins αvβ3 and α6β1 in human umbilical vein endothelial cells. J Biol Chem 277:46248–46255

    Article  CAS  PubMed  Google Scholar 

  • Leu S-J, Liu Y, Chen N, Chen CC, Lam SC, Lau LF (2003) Identification of a novel integrin α6β1 binding site in the angiogenic inducer CCN1 (CYR61). J Biol Chem 278:33801–33808

    Article  CAS  PubMed  Google Scholar 

  • Lipson KE, Wong C, Teng Y, Spong S (2012) CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair 5:S24

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Herault Y, Pavlovic G, Leask A (2014a) Skin progenitor cells contribute to bleomycin-induced skin fibrosis. Arthritis Rheum 66:707–713

    Article  CAS  Google Scholar 

  • Liu S, Thompson K, Leask A (2014b) CCN2 expression by fibroblasts is not required for cutaneous tissue repair. Wound Repair Regen 22:119–124

    Article  PubMed  Google Scholar 

  • Meyer K, Hodwin B, Ramanujam D, Engelhardt S, Sarikas A (2016) Essential role for premature senescence of myofibroblasts in myocardial fibrosis. J Am Coll Cardiol 67:2018–2028

    Article  CAS  PubMed  Google Scholar 

  • Mo FE, Muntean AG, Chen CC, Stolz DB, Watkins SC, Lau LF (2002) CYR61 (CCN1) is essential for placental development and vascular integrity. Mol Cell Biol 22:8709–8720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts DD, Lau LF (2011) Matricellualr Proteins. In: Mecham RP (ed) The extracellular matrix: an overview. Springer-Verlag, Berlin, pp. 369–413

    Chapter  Google Scholar 

  • Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsang M, Leask A (2015) CCN2 is required for recruitment of Sox2-expressing cells during cutaneous tissue repair. J Cell Commun Signal 9:341–346

    Article  PubMed  Google Scholar 

  • Wiley CD, Velarde MC, Lecot P, Liu S, Sarnoski EA, Freund A, Shirakawa K, Lim HW, Davis SS, Ramanathan A, Gerencser AA, Verdin E, Campisi J (2016) Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab 23:303–314

    Article  CAS  PubMed  Google Scholar 

  • Yoon PO, Lee MA, Cha H, Jeong MH, Kim J, Jang SP, Choi BY, Jeong D, Yang DK, Hajjar RJ, Park WJ (2010) The opposing effects of CCN2 and CCN5 on the development of cardiac hypertrophy and fibrosis. J Mol Cell Cardiol 49:294–303

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Woo Jin Park for gifts of adenoviral vectors. This work was supported by a grant from the NIH (R01 AR061791) to L.F.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lester F. Lau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jun, JI., Lau, L.F. CCN2 induces cellular senescence in fibroblasts. J. Cell Commun. Signal. 11, 15–23 (2017). https://doi.org/10.1007/s12079-016-0359-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-016-0359-1

Keywords

Navigation