Skip to main content
Log in

Nifedipine and phenytoin induce matrix synthesis, but not proliferation, in intact human gingival connective tissue ex vivo

  • Research Article
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Drug-induced gingival enlargement (DIGE) is a fibrotic condition that can be caused by the antihypertensive drug nifedipine and the anti-seizure drug phenytoin, but the molecular etiology of this type of fibrosis is not well understood and the role of confounding factors such as inflammation remains to be fully investigated. The aim of this study was to develop an ex vivo gingival explant system to allow investigation of the effects of nifedipine and phenytoin alone on human gingival tissue. Comparisons were made to the histology of human DIGE tissue retrieved from individuals with DIGE. Increased collagen, fibronectin, and proliferating fibroblasts were evident, but myofibroblasts were not detected in DIGE samples caused by nifedipine and phenytoin. In healthy gingiva cultured in nifedipine or phenytoin-containing media, the number of cells positive for p-SMAD2/3 increased, concomitant with increased CCN2 and periostin immunoreactivity compared to untreated explants. Collagen content assessed through hydroxyproline assays was significantly higher in tissues cultured with either drug compared to control tissues, which was confirmed histologically. Matrix fibronectin levels were also qualitatively greater in tissues treated with either drug. No significant differences in proliferating cells were observed between any of the conditions. Our study demonstrates that nifedipine and phenytoin activate canonical transforming growth factor-beta signaling, CCN2 and periostin expression, as well as increase collagen density, but do not influence cell proliferation or induce myofibroblast differentiation. We conclude that in the absence of confounding variables, nifedipine and phenytoin alter matrix homeostasis in gingival tissue explants ex vivo, and drug administration is a significant factor influencing ECM accumulation in gingival enlargement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arancibia R, Oyarzun A, Silva D, Tobar N, Martinez J, Smith PC (2013) Tumor necrosis factor-alpha inhibits transforming growth factor-beta-stimulated myofibroblastic differentiation and extracellular matrix production in human gingival fibroblasts. J Periodontol 84:683–93

    Article  PubMed  CAS  Google Scholar 

  • Armitage GC (1999) Development of a classification system for periodontal diseases and conditions. Ann Periodontol 4:1–6

    Article  PubMed  CAS  Google Scholar 

  • Baker BM, Chen CS (2012) Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci 125:3015–24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banthia R, Gupta S, Banthia P, Singh P, Raje S, Kaur N (2014) Is periodontal health a predictor of drug-induced gingival overgrowth? A cross-sectional study. Dent Res J (Isfahan) 11:579–84

    Google Scholar 

  • Bartold PM, Walsh LJ, Narayanan AS (2000) Molecular and cell biology of the gingiva. Periodontol 2000(24):28–55

    Article  Google Scholar 

  • Boye K, Maelandsmo GM (2010) S100A4 and metastasis: a small actor playing many roles. Am J Pathol 176:528–35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477:267–283

    Article  PubMed  CAS  Google Scholar 

  • Brown RS, Beaver WT, Bottomley WK (1991) On the mechanism of drug-induced gingival hyperplasia. J Oral Pathol Med 20:201–209

    Article  PubMed  CAS  Google Scholar 

  • Darby I, Skalli O, Gabbiani G (1990) Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 63:21–9

    PubMed  CAS  Google Scholar 

  • Dill RE, Iacopino AM (1997) Myofibroblasts in phenytoin-induced hyperplastic connective tissue in the rat and in human gingival overgrowth. J Periodontol 68:375–380

    Article  PubMed  CAS  Google Scholar 

  • Dongari-Bagtzoglou A (2004) Drug-associated gingival enlargement. J Periodontol 75:1424–31

    Article  PubMed  Google Scholar 

  • Duarte WR, Kasugai S, Iimura T, Oida S, Takenaga K, Ohya K, Ishikawa I (1998) cDNA cloning of S100 calcium-binding proteins from bovine periodontal ligament and their expression in oral tissues. J Dent Res 77:1694–9

    Article  PubMed  CAS  Google Scholar 

  • Elenjord R, Ljones H, Sundkvist E, Loennechen T, Winberg JO (2008) Dysregulation of matrix metalloproteinases and their tissue inhibitors by S100A4. Connect Tissue Res 49:185–8

    Article  PubMed  CAS  Google Scholar 

  • Elliott CG, Wang J, Guo X, Xu SW, Eastwood M, Guan J, Leask A, Conway SJ, Hamilton DW (2012) Periostin modulates myofibroblast differentiation during full-thickness cutaneous wound repair. J Cell Sci 125:121–32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujimori Y, Maeda S, Saeki M, Morisaki I, Kamisaki Y (2001) Inhibition by nifedipine of adherence- and activated macrophage-induced death of human gingival fibroblasts. Eur J Pharmacol 415:95–103

    Article  PubMed  CAS  Google Scholar 

  • Gabbiani G (2003) The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 200:500–3

    Article  PubMed  CAS  Google Scholar 

  • Guo F, Carter DE, Mukhopadhyay A, Leask A (2011) Gingival fibroblasts display reduced adhesion and spreading on extracellular matrix: a possible basis for scarless tissue repair? PLoS One 6, e27097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heasman PA, Hughes FJ (2014) Drugs, medications and periodontal disease. Br Dent J 217:411–9

    Article  PubMed  CAS  Google Scholar 

  • Hong HH, Uzel MI, Duan C, Sheff MC, Trackman PC (1999) Regulation of lysyl oxidase, collagen, and connective tissue growth factor by TGF-beta1 and detection in human gingiva. Lab Invest 79:1655–67

    PubMed  CAS  Google Scholar 

  • Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H, Toyama Y, Bonewald LF, Kudo A (1999) Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 14:1239–1249

    Article  PubMed  CAS  Google Scholar 

  • Ilgenli T, Atilla G, Baylas H (1999) Effectiveness of periodontal therapy in patients with drug-induced gingival overgrowth. Long-term results. J Periodontol 70:967–72

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312

    Article  PubMed  CAS  Google Scholar 

  • Kanno CM, Oliveira JA, Garcia JF, Castro AL, Crivelini MM (2008) Effects of cyclosporin, phenytoin, and nifedipine on the synthesis and degradation of gingival collagen in tufted capuchin monkeys (Cebus apella): histochemical and MMP-1 and −2 and collagen I gene expression analyses. J Periodontol 79:114–22

    Article  PubMed  CAS  Google Scholar 

  • Kantarci A, Black SA, Xydas CE, Murawel P, Uchida Y, Yucekal-Tuncer B, Atilla G, Emingil G, Uzel MI, Lee A et al (2006) Epithelial and connective tissue cell CTGF/CCN2 expression in gingival fibrosis. J Pathol 210:59–66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kantarci A, Augustin P, Firatli E, Sheff MC, Hasturk H, Graves DT, Trackman PC (2007) Apoptosis in gingival overgrowth tissues. J Dent Res 86:888–92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kapoor M, Liu S, Huh K, Parapuram S, Kennedy L, Leask A (2008) Connective tissue growth factor promoter activity in normal and wounded skin. Fibrogenesis Tissue Repair 1:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kataoka M, Shimizu Y, Kunikiyo K, Asahara Y, Yamashita K, Ninomiya M, Morisaki I, Ohsaki Y, Kido JI, Nagata T (2000) Cyclosporin A decreases the degradation of type I collagen in rat gingival overgrowth. J Cell Physiol 182:351–358

    Article  PubMed  CAS  Google Scholar 

  • Kataoka M, Shimizu Y, Kunikiyo K, Asahara Y, Azuma H, Sawa T, Kido J, Nagata T (2001) Nifedipine induces gingival overgrowth in rats through a reduction in collagen phagocytosis by gingival fibroblasts. J Periodontol 72:1078–83

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Okahashi N, Kawai S, Kato T, Inaba H, Morisaki I, Amano A (2005) Impaired degradation of matrix collagen in human gingival fibroblasts by the antiepileptic drug phenytoin. J Periodontol 76:941–50

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Okahashi N, Ohno T, Inaba H, Kawai S, Amano A (2006) Effect of phenytoin on collagen accumulation by human gingival fibroblasts exposed to TNF-alpha in vitro. Oral Dis 12:156–162

    Article  PubMed  CAS  Google Scholar 

  • Kaur G, Verhamme KM, Dieleman JP, Vanrolleghem A, van Soest EM, Stricker BH, Sturkenboom MC (2010) Association between calcium channel blockers and gingival hyperplasia. J Clin Periodontol 37:625–630

    Article  PubMed  Google Scholar 

  • Keith DA, Paz MA, Gallop PM (1977) The effect of diphenylhydantoin on fibroblasts in vitro. J Dent Res 56:1279–1283

    Article  PubMed  CAS  Google Scholar 

  • Kim SS, Jackson-Boeters L, Darling MR, Rieder MJ, Hamilton DW (2013) Nifedipine induces periostin expression in gingival fibroblasts through TGF-beta. J Dent Res 92:1022–8

    Article  PubMed  CAS  Google Scholar 

  • Kim SS, Wen W, Prowse P, Hamilton DW (2015) Regulation of matrix remodelling phenotype in gingival fibroblasts by substratum topography. J Cell Mol Med

  • Leask A (2013) Focal adhesion kinase: a key mediator of transforming growth factor beta signaling in fibroblasts. Adv Wound Care (New Rochelle) 2:247–9

    Article  Google Scholar 

  • Mael-Ainin M, Abed A, Conway SJ, Dussaule JC, Chatziantoniou C (2014) Inhibition of periostin expression protects against the development of renal inflammation and fibrosis. J Am Soc Nephrol 25:1724–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martelli H Jr, Santos SM, Guimaraes AL, Paranaiba LM, Laranjeira AL, Coletta RD, Bonan PR (2010) Idiopathic gingival fibromatosis: description of two cases. Minerva Stomatol 59:143–8

    PubMed  Google Scholar 

  • McKleroy W, Lee TH, Atabai K (2013) Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis. Am J Physiol Lung Cell Mol Physiol 304:L709–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miranda J, Brunet L, Roset P, Berini L, Farre M, Mendieta C (2001) Prevalence and risk of gingival enlargement in patients treated with nifedipine. J Periodontol 72:605–11

    Article  PubMed  CAS  Google Scholar 

  • Mishra MB, Khan ZY, Mishra S (2011) Gingival overgrowth and drug association: a review. Indian J Med Sci 65:73–82

    Article  PubMed  CAS  Google Scholar 

  • Moy LS, Tan EM, Holness R, Uitto J (1985) Phenytoin modulates connective tissue metabolism and cell proliferation in human skin fibroblast cultures. Arch Dermatol 121:79–83

    Article  PubMed  CAS  Google Scholar 

  • Naik PK, Bozyk PD, Bentley JK, Popova AP, Birch CM, Wilke CA, Fry CD, White ES, Sisson TH, Tayob N et al (2012) Periostin promotes fibrosis and predicts progression in patients with idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 303:L1046–56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nishikawa S, Nagata T, Morisaki I, Oka T, Ishida H (1996) Pathogenesis of drug-induced gingival overgrowth. A review of studies in the rat model. J Periodontol 67:463–71

    Article  PubMed  CAS  Google Scholar 

  • Norris RA, Damon B, Mironov V, Kasyanov V, Ramamurthi A, Moreno-Rodriguez R, Trusk T, Potts JD, Goodwin RL, Davis J et al (2007) Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. J Cell Biochem 101:695–711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oku E, Kanaji T, Takata Y, Oshima K, Seki R, Morishige S, Imamura R, Ohtsubo K, Hashiguchi M, Osaki K et al (2008) Periostin and bone marrow fibrosis. Int J Hematol 88:57–63

    Article  PubMed  CAS  Google Scholar 

  • Osterreicher CH, Penz-Osterreicher M, Grivennikov SI, Guma M, Koltsova EK, Datz C, Sasik R, Hardiman G, Karin M, Brenner DA (2011) Fibroblast-specific protein 1 identifies an inflammatory subpopulation of macrophages in the liver. Proc Natl Acad Sci U S A 108:308–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Petersen OW, Ronnov-Jessen L, Howlett AR, Bissell MJ (1992) Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci U S A 89:9064–8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pihlstrom BL, Michalowicz BS, Johnson NW (2005) Periodontal diseases. Lancet 366:1809–20

    Article  PubMed  Google Scholar 

  • Pisoschi CG, Stanciulescu CE, Andrei AM, Berbecaru-Iovan A, Munteanu C, Popescu F, Banita IM (2014) Role of transforming growth factor beta-connective tissue growth factor pathway in dihydropyridine calcium channel blockers-induced gingival overgrowth. Rom J Morphol Embryol 55:285–90

    PubMed  Google Scholar 

  • Sakamoto R, Nitta T, Kamikawa Y, Kono S, Kamikawa Y, Sugihara K, Tsuyama S, Murata F (2002) Histochemical, immunohistochemical, and ultrastructural studies of gingival fibromatosis: a case report. Med Electron Microsc 35:248–54

    Article  PubMed  Google Scholar 

  • Sam G, Sebastian SC (2014) Nonsurgical management of nifedipine induced gingival overgrowth. Case Rep Dent 2014:741402

    PubMed  PubMed Central  Google Scholar 

  • Shikata H, Utsumi N, Shimojima T, Oda Y, Okada Y (1993) Increased expression of type VI collagen genes in drug-induced gingival enlargement. FEBS Lett 334:65–8

    Article  PubMed  CAS  Google Scholar 

  • Sobral LM, Kellermann MG, Graner E, Martelli-Junior H, Coletta RD (2010) Cyclosporin A-induced gingival overgrowth is not associated with myofibroblast transdifferentiation. Braz Oral Res 24:182–8

    Article  PubMed  Google Scholar 

  • Steinsvoll S, Halstensen TS, Schenck K (1999) Extensive expression of TGF-beta1 in chronically-inflamed periodontal tissue. J Clin Periodontol 26:366–373

    Article  PubMed  CAS  Google Scholar 

  • Sugarman BJ, Aggarwal BB, Hass PE, Figari IS, Palladino MA Jr, Shepard HM (1985) Recombinant human tumor necrosis factor-alpha: effects on proliferation of normal and transformed cells in vitro. Science 230:943–5

    Article  PubMed  CAS  Google Scholar 

  • Takagi M, Yamamoto H, Mega H, Hsieh KJ, Shioda S, Enomoto S (1991) Heterogeneity in the gingival fibromatoses. Cancer 68:2202–12

    Article  PubMed  CAS  Google Scholar 

  • Tavassoli S, Yamalik N, Caglayan F, Caglayan G, Eratalay K (1998) The clinical effects of nifedipine on periodontal status. J Periodontol 69:108–12

    Article  PubMed  CAS  Google Scholar 

  • Tipton DA, Fry HR, Dabbous MK (1994) Altered collagen metabolism in nifedipine-induced gingival overgrowth. J Periodontal Res 29:401–409

    Article  PubMed  CAS  Google Scholar 

  • Trackman PC, Kantarci A (2015) Molecular and clinical aspects of drug-induced gingival overgrowth. J Dent Res 94:540–6

    Article  PubMed  CAS  Google Scholar 

  • Trojanowska M, LeRoy EC, Eckes B, Krieg T (1998) Pathogenesis of fibrosis: type 1 collagen and the skin. J Mol Med (Berl) 76:266–74

    Article  CAS  Google Scholar 

  • Uzel MI, Kantarci A, Hong HH, Uygur C, Sheff MC, Firatli E, Trackman PC (2001) Connective tissue growth factor in drug-induced gingival overgrowth. J Periodontol 72:921–931

    Article  PubMed  CAS  Google Scholar 

  • Vi L, Feng L, Zhu RD, Wu Y, Satish L, Gan BS, O'Gorman DB (2009) Periostin differentially induces proliferation, contraction and apoptosis of primary Dupuytren’s disease and adjacent palmar fascia cells. Exp Cell Res 315:3574–86

    Article  PubMed  CAS  Google Scholar 

  • Wen W, Chau E, Jackson-Boeters L, Elliott C, Daley TD, Hamilton DW (2010b) TGF-beta1 and FAK regulate periostin expression in PDL fibroblasts. J Dent Res 89:1439–43

    Article  PubMed  CAS  Google Scholar 

  • Yamada H, Nishimura F, Naruishi K, Chou HH, Takashiba S, Albright GM, Nares S, Iacopino AM, Murayama Y (2000) Phenytoin and cyclosporin A suppress the expression of MMP-1, TIMP-1, and cathepsin L, but not cathepsin B in cultured gingival fibroblasts. J Periodontol 71:955–960

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Ono J, Masuoka M, Ohta S, Izuhara K, Ikezawa Z, Aihara M, Takahashi K (2012) Serum periostin levels are correlated with progressive skin sclerosis in patients with systemic sclerosis. Br J Dermatol 168:717–725

    Article  CAS  Google Scholar 

  • Yamasaki A, Rose GG, Pinero GJ, Mahan CJ (1987) Ultrastructure of fibroblasts in cyclosporin A-induced gingival hyperplasia. J Oral Pathol 16:129–34

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Serada S, Fujimoto M, Terao M, Kotobuki Y, Kitaba S, Matsui S, Kudo A, Naka T, Murota H et al (2012) Periostin facilitates skin sclerosis via PI3K/Akt dependent mechanism in a mouse model of scleroderma. PLoS One 7, e41994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou HM, Wang J, Elliott C, Wen W, Hamilton DW, Conway SJ (2010) Spatiotemporal expression of periostin during skin development and incisional wound healing: lessons for human fibrotic scar formation. J Cell Commun Signal 4:99–107

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to extend special thanks to Dr. Sandhu (Western University, London, ON, Canada) who supplied all the gingival tissues used in the study and Sarah Michelson (Western University, London, ON, Canada) for quantifying PCNA-positive and total number of cells in the tissues from patient samples. This work was funded by the Natural Sciences and Engineering Research Council of Canada (Grant Number: 355615–2009) and the Canadian Foundation for Innovation Leaders Opportunity Fund (Grant no: 18742) to DWH. SSK is a recipient of a Canadian Institutes of Health Research Doctoral Award scholarship. DWH is a recipient of the Ontario Ministry of Research and Innovation Early Researcher Award.

Competing interests

The authors declare no conflict of interests.

Author contributions

SSK performed the research, explant culture, immunohistochemistry, hydroxyproline assay, data analysis, prepared the figures, and wrote the manuscript. DWH designed the research study, as well as wrote and revised the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas W. Hamilton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.S., Michelsons, S., Creber, K. et al. Nifedipine and phenytoin induce matrix synthesis, but not proliferation, in intact human gingival connective tissue ex vivo. J. Cell Commun. Signal. 9, 361–375 (2015). https://doi.org/10.1007/s12079-015-0303-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-015-0303-9

Keywords

Navigation