Skip to main content

Advertisement

Log in

A network meta-analysis of direct oral anticoagulants for portal vein thrombosis in cirrhosis

  • Original Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Background

Current guidelines have limited consensus on the approach to portal venous thrombosis (PVT) in cirrhotic patients. While there is rising interest in direct oral anticoagulants (DOACs) use for PVT, current evidence is limited by small sample size and lack of comparisons to traditional anticoagulants. Thus, a network meta-analysis was conducted to compare the use of DOACs with traditional anticoagulants.

Methods

Medline and Embase were searched for articles about anticoagulation use in cirrhotic patients with nontumorous PVT for articles on DOACs, warfarin, low-molecular weight heparin (LMWH) or antithrombin III. A network analysis was conducted using risk ratios (RR) with surface under the cumulative ranking curve (SUCRA). A single-arm meta-analysis was used to summarize the outcomes of DOAC treatment.

Results

A total of 10 articles were included in the study. 79.5% (CI 38.8–95.9) of DOACs patients achieved complete or partial recanalization and 9.80% (CI 4.50–20.0) experienced a bleeding event. DOACs were superior to LMWH (RR 2.299, CI 1.037–5.093, p = 0.040), warfarin (RR 1.762, CI 1.017–3.053, p = 0.043) and no treatment (RR 3.489, CI 1.394–8.733, p = 0.008) in complete recanalization. For partial recanalization, while DOACs were not superior to any treatment, they had the highest probability in achieving partial recanalization in SUCRA analysis. Bleeding risk and mortality were similar compared to other treatments.

Conclusion

The network analysis supports the use of DOACs in cirrhotic patients, with significant rates of complete recanalization compared to other treatments without increasing bleeding risk. DOACs can potentially be considered for nontumorous PVT in cirrhosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data are available from Medline and Embase databases.

Abbreviations

DOACs:

Direct oral anticoagulants

PVT:

Portal vein thrombosis

LMWH:

Low-molecular weight heparin

CRNMB:

Clinically relevant non-major bleeding

RR:

Risk Ratio

SUCRA:

Surface under the cumulative ranking curve

JBI:

Joanna Briggs Institute

References

  1. Tsochatzis EA, Senzolo M, Germani G, Gatt A, Burroughs AK. Systematic review: portal vein thrombosis in cirrhosis. Aliment Pharmacol Ther 2010;31(3):366–374

    Article  CAS  PubMed  Google Scholar 

  2. Northup PG, Garcia-Pagan JC, Garcia-Tsao G, et al. Vascular liver disorders, portal vein thrombosis, and procedural bleeding in patients with liver disease: 2020 practice guidance by the American Association for the Study of Liver Diseases. Hepatology 2020. https://doi.org/10.1002/hep.31646

    Article  Google Scholar 

  3. Søgaard KK, Horváth-Puhó E, Grønbaek H, Jepsen P, Vilstrup H, Sørensen HT. Risk of venous thromboembolism in patients with liver disease: a nationwide population-based case-control study. Am J Gastroenterol 2009;104(1):96–101

    Article  PubMed  Google Scholar 

  4. Tripodi A, Mannucci PM. The coagulopathy of chronic liver disease. N Engl J Med 2011;365(2):147–156

    Article  CAS  PubMed  Google Scholar 

  5. Muciño-Bermejo J, Carrillo-Esper R, Uribe M, Méndez-Sánchez N. Coagulation abnormalities in the cirrhotic patient. Ann Hepatol 2013;12(5):713–724

    Article  PubMed  Google Scholar 

  6. Hirsh J, Fuster V, Ansell J, Halperin JL. American Heart Association/American College of Cardiology foundation guide to Warfarin therapy. Circulation 2003;107(12):1692–1711

    Article  PubMed  Google Scholar 

  7. Sevestre MA, Belizna C, Durant C, et al. Compliance with recommendations of clinical practice in the management of venous thromboembolism in cancer: the CARMEN study. J Mal Vasc 2014;39(3):161–168

    Article  PubMed  Google Scholar 

  8. Marchocki Z, Norris L, Toole S, Gleeson N, Saadeh FA. Patients’ experience and compliance with extended low molecular weight heparin prophylaxis post-surgery for gynecological cancer: a prospective observational study. Int J Gynecol Cancer 2019. https://doi.org/10.1136/ijgc-2019-000284

    Article  PubMed  Google Scholar 

  9. Yeh Calvin H, Hogg K, Weitz JI. Overview of the new oral anticoagulants. Arterioscler Thromb Vasc Biol 2015;35(5):1056–1065

    Article  CAS  PubMed  Google Scholar 

  10. Mulder FI, Bosch FTM, Young AM, et al. Direct oral anticoagulants for cancer-associated venous thromboembolism: a systematic review and meta-analysis. Blood 2020;136(12):1433–1441

    Article  PubMed  Google Scholar 

  11. López-López JA, Sterne JAC, Thom HHZ, et al. Oral anticoagulants for prevention of stroke in atrial fibrillation: systematic review, network meta-analysis, and cost effectiveness analysis. BMJ 2017;359:j5058

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kearon C, Akl EA, Ornelas J, et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest 2016;149(2):315–352

    Article  PubMed  Google Scholar 

  13. Priyanka P, Kupec JT, Krafft M, Shah NA, Reynolds GJ. Newer oral anticoagulants in the treatment of acute portal vein thrombosis in patients with and without cirrhosis. Int J Hepatol 2018;2018:8432781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weinberg EM, Palecki J, Reddy KR. Direct-acting oral anticoagulants (DOACs) in cirrhosis and cirrhosis-associated portal vein thrombosis. Semin Liver Dis 2019;39(2):195–208

    Article  CAS  PubMed  Google Scholar 

  15. Scaglione F. New oral anticoagulants: comparative pharmacology with vitamin K antagonists. Clin Pharmacokinet 2013;52(2):69–82

    Article  CAS  PubMed  Google Scholar 

  16. Nagaoki YA, Hiroshi A, Daijyo K, Teraoka Y, Shinohara F, Nakamura Y, Hatooka M, Morio K, Nakahara T, Kawaoka T, Tsuge M, Hiramatsu A, Imamura M, Kawakami Y, Ochi H, Chayama K. Efficacy and safety of edoxaban for treatment of portal vein thrombosis following danaparoid sodium in patients with liver cirrhosis. Hepatol Res 2018;48(1):51–58

    Article  CAS  PubMed  Google Scholar 

  17. Hanafy ASA-E, Sherief A-E, Dawoud MM. Randomized controlled trial of rivaroxaban versus warfarin in the management of acute non-neoplastic portal vein thrombosis. Vasc Pharmacol 2019;113:86–91

    Article  CAS  Google Scholar 

  18. Ai MHD, Wei G, Tan XP, Xu L, Xu C, Zhang Q, Zhang Y, Li J. Efficacy and safety study of direct-acting oral anticoagulants for the treatment of chronic portal vein thrombosis in patients with liver cirrhosis. Eur J Gastroenterol Hepatol 2020;32:1395–1400

    Article  CAS  PubMed  Google Scholar 

  19. Naymagon LT, Douglas T, Zubizarreta N, Moshier E, Mascarenhas J, Schiano T. Safety, efficacy, and long-term outcomes of anticoagulation in cirrhotic portal vein thrombosis. Dig Dis Sci 2020. https://doi.org/10.1007/s10620-020-06695-4

    Article  PubMed  Google Scholar 

  20. Qi X, De Stefano V, Li H, Dai J, Guo X, Fan D. Anticoagulation for the treatment of portal vein thrombosis in liver cirrhosis: a systematic review and meta-analysis of observational studies. Eur J Intern Med 2015;26(1):23–29

    Article  PubMed  CAS  Google Scholar 

  21. Loffredo L, Pastori D, Farcomeni A, Violi F. Effects of anticoagulants in patients with cirrhosis and portal vein thrombosis: a systematic review and meta-analysis. Gastroenterology 2017;153(2):480-487.e481

    Article  CAS  PubMed  Google Scholar 

  22. Mohan BP, Aravamudan VM, Khan SR, Ponnada S, Asokkumar R, Adler DG. Treatment response and bleeding events associated with anticoagulant therapy of portal vein thrombosis in cirrhotic patients: systematic review and meta-analysis. Ann Gastroenterol 2020;33(5):521–527

    PubMed  PubMed Central  Google Scholar 

  23. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6(7):e1000097–e1000097

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zuily S, Cohen H, Isenberg D, et al. Use of direct oral anticoagulants in patients with thrombotic antiphospholipid syndrome: Guidance from the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. J Thromb Haemost 2020;18(9):2126–2137

    Article  CAS  PubMed  Google Scholar 

  25. Hopewell S, McDonald S, Clarke MJ, Egger M. Grey literature in meta-analyses of randomized trials of health care interventions. Cochrane Database Systematic Rev 2007. https://doi.org/10.1002/14651858.MR000010.pub3

    Article  Google Scholar 

  26. McKenzie JE, Brennan SE, Ryan RE, Thomson HJ, Johnston RV, Thomas J. Defining the Criteria for Including Studies and how they will be Grouped for the Synthesis. In Cochrane Handbook for Systematic Reviews of Interventions. New Jersey: Wiley; 2019. p 33–65

    Chapter  Google Scholar 

  27. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 2014;14(1):135

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schulman S, Kearon C. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J Thromb Haemost 2005;3(4):692–694

    Article  CAS  PubMed  Google Scholar 

  29. Kaatz S, Ahmad D, Spyropoulos AC, Schulman S, Anticoagulation tSoCo. Definition of clinically relevant non-major bleeding in studies of anticoagulants in atrial fibrillation and venous thromboembolic disease in non-surgical patients: communication from the SSC of the ISTH. J Thromb Haemost 2015;13(11):2119–2126

    Article  CAS  PubMed  Google Scholar 

  30. White IR. Network meta-analysis. Stand Genom Sci 2015;15(4):951–985

    Google Scholar 

  31. White IR, Barrett JK, Jackson D, Higgins JPT. Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. Res Synth Methods 2012;3(2):111–125

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tonin FS, Rotta I, Mendes AM, Pontarolo R. Network meta-analysis: a technique to gather evidence from direct and indirect comparisons. Pharm Pract (Granada) 2017;15(1):943–943

    Article  Google Scholar 

  33. Shim SA-O, Yoon BA-O, Shin IA-O, Bae JA-O. Network meta-analysis: application and practice using Stata. Epidemiol Health 2017;39: e2017047 (2092-7193 (Electronic))

    Article  PubMed  PubMed Central  Google Scholar 

  34. Salanti G, Ades AE, Ioannidis JPA, Ioannidis JP. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol 2011;64:163–171 (1878-5921 (Electronic))

    Article  PubMed  Google Scholar 

  35. Schwarzer G, Chemaitelly H, Abu-Raddad LJ, Rücker G. Seriously misleading results using inverse of Freeman-Tukey double arcsine transformation in meta-analysis of single proportions. Res Synth Methods 2019;10(3):476–483

    Article  PubMed  PubMed Central  Google Scholar 

  36. Northup PG, Garcia-Pagan JC, Garcia-Tsao G, et al. Vascular liver disorders, portal vein thrombosis, and procedural bleeding in patients with liver disease: 2020 practice guidance by the American Association for the Study of Liver Diseases. Hepatology 2020;73:366–413

    Article  Google Scholar 

  37. Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019;366:l4898

    Article  PubMed  Google Scholar 

  38. Munn Z, Moola S, Riitano D, Lisy K. The development of a critical appraisal tool for use in systematic reviews addressing questions of prevalence. Int J Health Policy Manag 2014;3(3):123–128

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhou TS, Xin S, Zhou T, Li Y, Chen X, Cheng B, Gao Y. Efficacy and safety of nadroparin calcium-warfarin sequential anticoagulation in portal vein thrombosis in cirrhotic patients: a randomized controlled trial. Clin Transl Gastroenterol 2020;11(9): e00228

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hidaka HK, Shigehiro K, Sato T, Katsushima S, Izumi N, Igura T, Asahara S, Notsumata K, Osaki Y, Tsuji K, Kawanaka H, Akahoshi T, Hirota S, Matsutani S. Antithrombin III for portal vein thrombosis in patients with liver disease: a randomized, double-blind, controlled trial. Hepatol Res 2018;48(3):E107–E116

    Article  CAS  PubMed  Google Scholar 

  41. Bergère ME-P, Domitille E-P, Boillot O, Valette PJ, Guillaud O, Chambon-Augoyard C, Dumortier J. Portal vein thrombosis and liver cirrhosis: Long-term anticoagulation is effective and safe. Clin Res Hepatol Gastroenterol 2019;43(4):395–402

    Article  PubMed  Google Scholar 

  42. Chung JWK, Gi H, Lee JH, Ok KS, Jang ES, Jeong SH, Kim JW. Safety, efficacy, and response predictors of anticoagulation for the treatment of nonmalignant portal-vein thrombosis in patients with cirrhosis: a propensity score matching analysis. Clin Mol Hepatol 2014;20(4):384–391

    Article  PubMed  PubMed Central  Google Scholar 

  43. Caracciolo GG, Garcovich M, Zocco MA, Ainora ME, Roccarina D, Annicchiarico BE, Ponziani FR, Siciliano M, Gasbarrini A. Clinical outcome of partial portal vein thrombosis in cirrhotic patients: To observe or to treat? Digest Liver Dis 2013;45:S171

    Article  Google Scholar 

  44. Walker CA, Martens J, Laryea M, Ramaraju GA, Levstik MA, Melaragno J. Evaluation of the efficacy of apixaban use for the treatment of portal vein thrombosis in patients with cirrhosis. Hepatology 2019;70:265A

    Article  Google Scholar 

  45. Almarshad F, Alaklabi A, Bakhsh E, Pathan A, Almegren M. Use of direct oral anticoagulants in daily practice. Am J Blood Res 2018;8(4):57–72

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen A, Stecker E, Bruce AW. Direct oral anticoagulant use: a practical guide to common clinical challenges. J Am Heart Assoc 2020;9(13): e017559

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Burnett AE, Mahan CE, Vazquez SR, Oertel LB, Garcia DA, Ansell J. Guidance for the practical management of the direct oral anticoagulants (DOACs) in VTE treatment. J Thromb Thrombolysis 2016;41(1):206–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mort JF, Davis JPE, Mahoro G, Stotts MJ, Intagliata NM, Northup PG. Rates of bleeding and discontinuation of direct oral anticoagulants in patients with decompensated cirrhosis. Clin Gastroenterol Hepatol 2021;19(7):1436–1442

    Article  CAS  PubMed  Google Scholar 

  49. Senzolo M, Garcia-Tsao G, García-Pagán JC. Current knowledge and management of portal vein thrombosis in cirrhosis. J Hepatol 2021;75(2):442–453

    Article  PubMed  Google Scholar 

  50. Ballestri S, Capitelli M, Fontana MC, et al. Direct oral anticoagulants in patients with liver disease in the era of non-alcoholic fatty liver disease global epidemic: a narrative review. Adv Ther 2020;37(5):1910–1932

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hernández RZ, Dalmau LMR, Aguilar MC, et al. Cost-effectiveness of direct oral anticoagulants versus vitamin K antagonist in atrial fibrillation: a study protocol using Real-World Data from Catalonia (FantasTIC Study). Medicine 2020;99(36): e22054

    Article  Google Scholar 

  52. Walter E, Voit M, Eichhober G. Cost-effectiveness analysis of apixaban compared to other direct oral anticoagulants for prevention of stroke in Austrian atrial fibrillation patients. Expert Rev Pharmacoecon Outcomes Res 2021;21(2):265–275

    Article  PubMed  Google Scholar 

Download references

Funding

This study receives no external funding. There are no funding interests to declare.

Author information

Authors and Affiliations

Authors

Contributions

CHN and DJHT should be considered joint first author. MDM and CHN act as the joint submission guarantor. All authors approve the final version of the manuscript, including the authorship list and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. Conceptualization and Design: CHN, FZW, NC, DQH, YYD, AJS, MDM. Acquisition of Data: CHN, DJHT, KRYN, JX. Analysis and Interpretation of Data: CHN, NS. Writing—original draft: CHN, DJHT, KRYN, NS, JX, FZW, NC. Writing—review and editing: DQH, YYD, AJS, MDM.

Corresponding authors

Correspondence to Cheng Han Ng or Mark D. Muthiah.

Ethics declarations

Conflict of interest

Arun J. Sanyal: Dr Sanyal is President of Sanyal Biotechnology and has stock options in Genfit, Akarna, Tiziana, Indalo, Durect and Galmed. He has served as a consultant to Astra Zeneca, Nitto Denko, Enyo, Ardelyx, Conatus, Nimbus, Amarin, Salix, Tobira, Takeda, Jannsen, Gilead, Terns, Birdrock, Merck, Valeant, Boehringer‐Ingelheim, Lilly, Hemoshear, Zafgen, Novartis, Novo Nordisk, Pfizer, Exhalenz and Genfit. He has been an unpaid consultant to Intercept, Echosens, Immuron, Galectin, Fractyl, Syntlogic, Affimune, Chemomab, Zydus, Nordic Bioscience, Albireo, Prosciento, Surrozen and Bristol Myers Squibb. His institution has received grant support from Gilead, Salix, Tobira, Bristol Myers, Shire, Intercept, Merck, Astra Zeneca, Malinckrodt, Cumberland and Novartis. He receives royalties from Elsevier and UptoDate. Remaining authors have no conflicts of interest to declare.

Animal research (ethics)

Not applicable.

Consent to participate (ethics)

Not applicable.

Consent to publish (ethics)

Not applicable.

Plant reproducibility

Not applicable.

Clinical Trials Registration

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, C.H., Tan, D.J.H., Nistala, K.R.Y. et al. A network meta-analysis of direct oral anticoagulants for portal vein thrombosis in cirrhosis. Hepatol Int 15, 1196–1206 (2021). https://doi.org/10.1007/s12072-021-10247-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-021-10247-x

Keywords

Navigation