Skip to main content

Advertisement

Log in

Twist in hepatocellular carcinoma: pathophysiology and therapeutics

  • Review Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related disease worldwide. Although HCC is mainly associated with viral hepatitis and alcoholic cirrhosis, numerous physiological and biochemical events are associated with HCC progression. The transcription factor Twist, which plays a key role in epithelial to mesenchymal transition, is reported to be associated with HCC. Overexpression of Twist causes various biochemical changes, such as increase of cell proliferation, reduction of apoptosis, cell cycle deregulation, generation of hepatic cancer stem cells, and in some cases, drug resistance. These changes result in various physiological changes, such as angiogenesis, cellular migration and invasion, and vasculogenic mimicry, which ultimately causes hepatocellular metastasis. Interestingly, targeting Twist via different strategies, especially small RNA technology, has shown promising therapeutic potential for future HCC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. CA Cancer J Clin. 2011;61(2):69–90

    Article  PubMed  Google Scholar 

  2. Maluccio M, Covey A. Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma. CA Cancer J Clin. 2012;62(6):394–399

    Article  PubMed  Google Scholar 

  3. Robins SL, Cotran RS. Neoplasia. In: Kumar V, Abbas AK, Fausto N, editors. Pathologic Basis of Disease. 7th ed. India: Thomson; 2009. 292–306

    Google Scholar 

  4. Chen CJ, Yang HI, Su J, Jen CL, You SL, Lu SN, et al. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA. 2006;295(1):65–73

    Article  CAS  PubMed  Google Scholar 

  5. Tania M, Khan MA, Fu J. Epithelial to mesenchymal transition inducing transcription factors and metastatic cancer. Tumour Biol. 2014;35(8):7335–7342

    Article  CAS  PubMed  Google Scholar 

  6. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–454

    Article  CAS  PubMed  Google Scholar 

  7. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–890

    Article  CAS  PubMed  Google Scholar 

  8. Thiery JP, Chua K, Sim WJ, Huang R. Epithelial mesenchymal transition during development in fibrosis and in the progression of carcinoma. Bull Cancer. 2010;97(11):1285–1295

    CAS  PubMed  Google Scholar 

  9. Gos M, Miłoszewska J, Przybyszewska M. Epithelial-mesenchymal transition in cancer progression. Postepy Biochem. 2009;55(2):121–128

    CAS  PubMed  Google Scholar 

  10. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117(7):927–939

    Article  CAS  PubMed  Google Scholar 

  11. Khan MA, Chen HC, Zhang D, Fu J. Twist: a molecular target in cancer therapeutics. Tumour Biol. 2013;34(5):2497–2506

    Article  CAS  PubMed  Google Scholar 

  12. Bourgeois P, Stoetzel C, Bolcato-Bellemin AL, Mattei MG, Perrin-Schmitt F. The human H-twist gene is located at 7p21 and encodes a B-HLH protein that is 96 % similar to its murine M-twist counterpart. Mamm Genome. 1996;7(12):915–917

    Article  CAS  PubMed  Google Scholar 

  13. Qin Q, Xu Y, He T, Qin C, Xu J. Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res. 2012;22(1):90–106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Xu Y, Xu Y, Liao L, Zhou N, Theissen SM, Liao XH, et al. Inducible knockout of Twist1 in young and adult mice prolongs hair growth cycle and has mild effects on general health, supporting Twist1 as a preferential cancer target. Am J Pathol. 2013;183(4):1281–1292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Howard TD, Paznekas WA, Green ED, Chiang LC, Ma N, Luna RIO, et al. Mutations in TWIST, a basic helix-loop-helix transcription factor, in Saethre-Chotzen syndrome. Nat Genet. 1997;15(1):36–41

    Article  PubMed  Google Scholar 

  16. Puisieux A, Valsesia-Wittmann S, Ansieau S. A twist for survival and cancer progression. Br J Cancer. 2006;94(1):13–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Franco HL, Casasnovas J, Rodríguez-Medina JR, Cadilla CL. Redundant or separate entities?—roles of Twist1 and Twist2 as molecular switches during gene transcription. Nucleic Acids Res. 2011;39(4):1177–1186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hong J, Zhou J, Fu J, He T, Qin J, Wang L, et al. Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness. Cancer Res. 2011;71(11):3980–3990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Yamamoto Y, Banas A, Murata S, Ishikawa M, Lim CR, Teratani T, et al. A comparative analysis of the transcriptome and signal pathways in hepatic differentiation of human adipose mesenchymal stem cells. FEBS J. 2008;275(6):1260–1273

    Article  CAS  PubMed  Google Scholar 

  20. Lee TK, Poon RT, Yuen AP, Ling MT, Kwok WK, Wang XH, et al. Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition. Clin Cancer Res. 2006;12(18):5369–5376

    Article  CAS  PubMed  Google Scholar 

  21. Zhu Q, Xu H, Xu Q, Yan W, Tian D. Expression of Twist gene in human hepatocellular carcinoma cell strains of different metastatic potential. J Huazhong Univ Sci Technolog Med Sci. 2008;28(2):144–146

    Article  CAS  PubMed  Google Scholar 

  22. Matsuo N, Shiraha H, Fujikawa T, Takaoka N, Ueda N, Tanaka S, et al. Twist expression promotes migration and invasion in hepatocellular carcinoma. BMC Cancer. 2009;9:240

    Article  PubMed Central  PubMed  Google Scholar 

  23. Sun T, Zhao N, Zhao XL, Gu Q, Zhang SW, Che N, et al. Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Hepatology. 2010;51(2):545–556

    Article  CAS  PubMed  Google Scholar 

  24. Ma JL, Han SX, Zhu Q, Zhao J, Zhang D, Wang L, et al. Role of Twist in vasculogenic mimicry formation in hypoxic hepatocellular carcinoma cells in vitro. Biochem Biophys Res Commun. 2011;408(4):686–691

    Article  CAS  PubMed  Google Scholar 

  25. Zhao XL, Sun T, Che N, Sun D, Zhao N, Dong XY, et al. Promotion of hepatocellular carcinoma metastasis through matrix metalloproteinase activation by epithelial-mesenchymal transition regulator Twist1. J Cell Mol Med. 2011;15(3):691–700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Niu RF, Zhang L, Xi GM, Wei XY, Yang Y, Shi YR, et al. Up-regulation of Twist induces angiogenesis and correlates with metastasis in hepatocellular carcinoma. J Exp Clin Cancer Res. 2007;26(3):385–394

    CAS  PubMed  Google Scholar 

  27. Subramaniam A, Shanmugam MK, Ong TH, Li F, Perumal E, Chen L, et al. Emodin inhibits growth and induces apoptosis in an orthotopic hepatocellular carcinoma model by blocking activation of STAT3. Br J Pharmacol. 2013;170(4):807–821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Zhang CH, Xu GL, Jia WD, Li JS, Ma JL, Ren WH, et al. Activation of STAT3 signal pathway correlates with twist and E-cadherin expression in hepatocellular carcinoma and their clinical significance. J Surg Res. 2012;174(1):120–129

    Article  CAS  PubMed  Google Scholar 

  29. Subramaniam A, Shanmugam MK, Perumal E, Li F, Nachiyappan A, Dai X, et al. Potential role of signal transducer and activator of transcription (STAT)3 signaling pathway in inflammation, survival, proliferation and invasion of hepatocellular carcinoma. Biochim Biophys Acta. 2013;1835(1):46–60

    CAS  PubMed  Google Scholar 

  30. Kortylewski M, Jove R, Yu H. Targeting STAT3 affects melanoma on multiple fronts. Cancer Metastasis Rev. 2005;24(2):315–327

    Article  CAS  PubMed  Google Scholar 

  31. Teng J, Wang X, Xu Z, Tang N. HBx-dependent activation of Twist mediates STAT3 control of epithelium-mesenchymal transition of liver cells. J Cell Biochem. 2013;114(5):1097–1104

    Article  CAS  PubMed  Google Scholar 

  32. Vichalkovski A, Gresko E, Hess D, Restuccia DF, Hemmings BA. PKB/AKT phosphorylation of the transcription factor Twist-1 at Ser42 inhibits p53 activity in response to DNA damage. Oncogene. 2010;29(24):3554–3565

    Article  CAS  PubMed  Google Scholar 

  33. Nakanishi K, Sakamoto M, Yasuda J, Takamura M, Fujita N, Tsuruo T, et al. Critical involvement of the phosphatidylinositol 3-kinase/Akt pathway in anchorage-independent growth and hematogeneous intrahepatic metastasis of liver cancer. Cancer Res. 2002;62(10):2971–2975

    CAS  PubMed  Google Scholar 

  34. Fu J, Chen Y, Cao J, Luo T, Qian YW, Yang W, et al. p28GANK overexpression accelerates hepatocellular carcinoma invasiveness and metastasis via phosphoinositol 3-kinase/AKT/hypoxia-inducible factor-1α pathways. Hepatology. 2011;53(1):181–192

    Article  CAS  PubMed  Google Scholar 

  35. Wang SN, Lee KT, Tsai CJ, Chen YJ, Yeh YT. Phosphorylated p38 and JNK MAPK proteins in hepatocellular carcinoma. Eur J Clin Invest. 2012;42(12):1295–1301

    Article  CAS  PubMed  Google Scholar 

  36. Watanabe O, Imamura H, Shimizu T, Kinoshita J, Okabe T, Hirano A, et al. Expression of twist and wnt in human breast cancer. Anticancer Res. 2004;24(6):3851–3856

    CAS  PubMed  Google Scholar 

  37. Kim M, Lee HC, Tsedensodnom O, Hartley R, Lim YS, Yu E, et al. Functional interaction between Wnt3 and Frizzled-7 leads to activation of the Wnt/beta-catenin signaling pathway in hepatocellular carcinoma cells. J Hepatol. 2008;48(5):780–791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Nambotin SB, Tomimaru Y, Merle P, Wands JR, Kim M. Functional consequences of WNT3/Frizzled7-mediated signaling in non-transformed hepatic cells. Oncogenesis. 2012;1:e31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Liu AY, Cai Y, Mao Y, Lin Y, Zheng H, Wu T, et al. Twist2 promotes self-renewal of liver cancer stem-like cells by regulating CD24. Carcinogenesis. 2014;35(3):537–545

    Article  CAS  PubMed  Google Scholar 

  40. Gort EH, Suijkerbuijk KP, Roothaan SM, Raman V, Vooijs M, van der Wall E, et al. Methylation of the TWIST1 promoter, TWIST1 mRNA levels, and immunohistochemical expression of TWIST1 in breast cancer. Cancer Epidemiol Biomarkers Prev. 2008;17(12):3325–3330

    Article  CAS  PubMed  Google Scholar 

  41. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3(6):415–428

    CAS  PubMed  Google Scholar 

  42. Locke I, Kote-Jarai Z, Fackler MJ, Bancroft E, Osin P, Nerurkar A, et al. Gene promoter hypermethylation in ductal lavage fluid from healthy BRCA gene mutation carriers and mutation-negative controls. Breast Cancer Res. 2007;9(1):R20

    Article  PubMed Central  PubMed  Google Scholar 

  43. Qiu X, Qiao F, Su X, Zhao Z, Fan H. Epigenetic activation of E-cadherin is a candidate therapeutic target in human hepatocellular carcinoma. Exp Ther Med. 2010;1(3):519–523

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Acun T, Oztas E, Yagci T, Yakicier MC. SIP1 is downregulated in hepatocellular carcinoma by promoter hypermethylation. BMC Cancer. 2011;11:223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. He M, Cao XC, He GC, Sheng XF, Ai XH, Wu YH. Casticin inhibits epithelial-mesenchymal transition of liver cancer stem cells of the SMMC-7721 cell line through downregulating Twist. Oncol Lett. 2014;7(5):1625–1631

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–111

    Article  CAS  PubMed  Google Scholar 

  47. Clarke MF, Fuller M. Stem cells and cancer: two faces of eve. Cell. 2006;124(6):1111–1115

    Article  CAS  PubMed  Google Scholar 

  48. Alvero AB, Chen R, Fu HH, Montagna M, Schwartz PE, Rutherford T, et al. Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle. 2009;8(1):158–166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun. 2006;351(4):820–824

    Article  CAS  PubMed  Google Scholar 

  50. Yin S, Li J, Hu C, Chen X, Yao M, Yan M, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer. 2007;120(7):1444–1450

    Article  CAS  PubMed  Google Scholar 

  51. Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology. 2007;132(7):2542–2556

    Article  CAS  PubMed  Google Scholar 

  52. Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY. CD133 + HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene. 2008;27(12):1749–1758

    Article  CAS  PubMed  Google Scholar 

  53. Ren KQ, Cao XZ, Liu ZH, Guo H, Quan MF, Liu F, et al. 8-Bromo-5-hydroxy-7-methoxychrysin targeting for inhibition of the properties of liver cancer stem cells by modulation of Twist signaling. Int J Oncol. 2013;43(5):1719–1729

    CAS  PubMed  Google Scholar 

  54. Na DC, Lee JE, Yoo JE, Oh BK, Choi GH, Park YN. Invasion and EMT-associated genes are up-regulated in B viral hepatocellular carcinoma with high expression of CD133-human and cell culture study. Exp Mol Pathol. 2011;90(1):66–73

    Article  CAS  PubMed  Google Scholar 

  55. Meng F, Glaser SS, Francis H, DeMorrow S, Han Y, Passarini JD, et al. Functional analysis of microRNAs in human hepatocellular cancer stem cells. J Cell Mol Med. 2012;16(1):160–173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Ji J, Yamashita T, Budhu A, Forgues M, Jia HL, Li C, et al. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology. 2009;50(2):472–480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Poon RTP, Fan ST, Wong J. Risk factors, prevention, and management of postoperative recurrence after resection of hepatocellular carcinoma. Ann Surg. 2000;232(1):10–24

    Article  Google Scholar 

  58. Yang MH, Chen CL, Chau GY, Chiou SH, Su CW, Chou TY, et al. Comprehensive analysis of the independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma. Hepatology. 2009;50(5):1464–1474

    Article  CAS  PubMed  Google Scholar 

  59. Shimoda M, Takahashi M, Yoshimoto T, Kono T, Ikai I, Kubo H. A homeobox protein, prox1, is involved in the differentiation, proliferation, and prognosis in hepatocellular carcinoma. Clin Cancer Res. 2006;12(20 Pt 1):6005–6011

    Article  CAS  PubMed  Google Scholar 

  60. Chang TM, Hung WC. Transcriptional repression of TWIST1 gene by Prospero-related homeobox 1 inhibits invasiveness of hepatocellular carcinoma cells. FEBS Lett. 2012;586(20):3746–3752

    Article  CAS  PubMed  Google Scholar 

  61. Chang TM, Hung WC. The homeobox transcription factor Prox1 inhibits proliferation of hepatocellular carcinoma cells by inducing p53-dependent senescence-like phenotype. Cancer Biol Ther. 2013;14(3):222–229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Huo W, Li ZM, Zhu XM, Bao YM, An LJ. MDA-7/IL-24 suppresses tumor adhesion and invasive potential in hepatocellular carcinoma cell lines. Oncol Rep. 2013;30(2):986–992

    CAS  PubMed  Google Scholar 

  63. Lee EK, Kim HJ, Lee KJ, Lee HJ, Lee JS, Kim DG, et al. Inhibition of the proliferation and invasion of hepatocellular carcinoma cells by lipocalin 2 through blockade of JNK and PI3K/Akt signaling. Int J Oncol. 2011;38(2):325–333

    Article  CAS  PubMed  Google Scholar 

  64. Wang YP, Yu GR, Lee MJ, Lee SY, Chu IS, Leem SH, et al. Lipocalin-2 negatively modulates the epithelial-to-mesenchymal transition in hepatocellular carcinoma through the epidermal growth factor (TGF-beta1)/Lcn2/Twist1 pathway. Hepatology. 2013;58(4):1349–1361

    Article  PubMed  Google Scholar 

  65. Okabe H, Ishimoto T, Mima K, Nakagawa S, Hayashi H, Kuroki H, et al. CD44s signals the acquisition of the mesenchymal phenotype required for anchorage-independent cell survival in hepatocellular carcinoma. Br J Cancer. 2014;110(4):958–966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Hernandez JM, Elahi A, Clark CW, Wang J, Humphries LA, Centeno B, et al. miR-675 mediates downregulation of Twist1 and Rb in AFP-secreting hepatocellular carcinoma. Ann Surg Oncol. 2013;20(Suppl 3):S625–S635

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Natural Science Foundation of China (no. 31400311) and the Construct Program of the Key Discipline of Basic Medicine in Hunan Province.

Compliance with ethical requirements and Conflict of interest

This article does not contain any studies with human or animal subjects. Hui Zou, Xing Feng, and Jian-Guo Cao declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, H., Feng, X. & Cao, JG. Twist in hepatocellular carcinoma: pathophysiology and therapeutics. Hepatol Int 9, 399–405 (2015). https://doi.org/10.1007/s12072-015-9634-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-015-9634-0

Keywords

Navigation