Skip to main content
Log in

Evolution of the vertebrate Y RNA cluster

  • Original Paper
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

Relatively little is known about the evolutionary histories of most classes of non-protein coding RNAs. Here we consider Y RNAs, a relatively rarely studied group of related pol-III transcripts. A single cluster of functional genes is preserved throughout tetrapod evolution, which however exhibits clade-specific tandem duplications, gene-losses, and rearrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://www.bioinf.uni-leipzig. de/Publications/SUPPLEMENTS/07-004/

References

  • Bompfünewerer AF, Flamm C, Fried C, Fritzsch G, Hofacker IL, Lehmann J, Missal K, Mosig A, Müller B, Prohaska SJ, Stadler BMR, Stadler PF, Tanzer A, Washietl S, Witwer C (2005) Evolutionary patterns of non-coding RNAs. Theory Biosci 123:301–369

    Article  Google Scholar 

  • Chen X, Quinn AM, Wolin SL (2000) Ro ribonucleoproteins contribute to the resistance of Deinococcus radiodurans to ultraviolet resistance. Genes Dev 14:777–782

    PubMed  CAS  Google Scholar 

  • Christov CP, Gardiner TJ, Szüts D, Krude T (2006) Functional requirement of noncoding Y RNAs for human chromosomal DNA replication. Mol Cell Biol 26:6993–7004

    Article  PubMed  CAS  Google Scholar 

  • Farris AD, O’Brien CA, Harley JB (1995) Y3 is the most conserved small RNA component of Ro ribonucleoprotein complexes in vertebrate species. Gene 154:193–198

    Article  PubMed  CAS  Google Scholar 

  • Farris AD, Gross JK, Hanas JS, B HJ (1996) Genes for murine Y1 and Y3 Ro RNAs have class 3 RNA polymerase III promoter structures and are unlinked on mouse chromosome 6. Gene 174:35–42

    Article  PubMed  CAS  Google Scholar 

  • Farris AD, Koelsch G, Pruijn GJ, van Venrooij WJ, Harley JB (1999) Conserved features of Y RNAs revealed by automated phylogenetic secondary structure analysis. Nucleic Acids Res 27:1070–8

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1989) Phylip—phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Green CD, Long KS, Shi H, Wolin SL (1998) Binding of the 60-kDa Ro autoantigen to Y RNAs: evidence for recognition in the major groove of a conserved helix. RNA 4:750–765

    Article  PubMed  CAS  Google Scholar 

  • Hertel J, Lindemeyer M, Missal K, Fried C, Tanzer A, Flamm C, Hofacker IL, Stadler PF, Students of Bioinformatics Computer Labs 2004 and 2005 (2006) The expansion of the metazoan microRNA repertoire. BMC Genomics 7:25

    Google Scholar 

  • van Horn DJ, Eisenberg D, O’Brien CA, Wolin SL (1995) Caenorhabditis elegans embryos contain only one major species of Ro RNP. RNA 1:293–303

    PubMed  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670

    Article  PubMed  CAS  Google Scholar 

  • Lerner MR, Boyle JA, Hardin JA, Steitz JA (1981) Two novel classes of small ribonucleoproteins detected by antibodies associated with lupus erythematosus. Science 211:400–402

    Article  PubMed  CAS  Google Scholar 

  • Maraia RJ, Sasaki-Tozawa N, Driscoll CT, Green ED, Darlington GJ (1994) The human Y4 small cytoplasmic RNA gene is controlled by upstream elements and resides on chromosome 7 with all other hY scRNA genes. Nucleic Acids Res 22:3045–3052

    Article  PubMed  CAS  Google Scholar 

  • Maraia R, Sakulich AL, Brinkmann E, Green ED (1996) Gene encoding human Ro-associated autoantigen Y5 RNA. Nucleic Acids Res 24:3552–3559

    Article  PubMed  CAS  Google Scholar 

  • Morgenstern B (1999) DIALIGN 2: improvement of the segment-to-segment approach to multiple sequence alignment. Bioinformatics 15:211–218

    Article  PubMed  CAS  Google Scholar 

  • Mosig A, Sameith K, Stadler PF (2005) fragrep: efficient search for fragmented patterns in genomic sequences. Genomics Proteomics Bioinformatics 4:56–60

    Article  Google Scholar 

  • Nawrocki EP, Eddy SR (2007) Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput Biol 2007. epub: doi:10.1371/journal.pcbi.0030056.eor

  • O’Brien CA, Margelot K, Wolin SL (1993) Xenopus Ro ribonucleoproteins: members of an evolutionarily conserved class of cytoplasmic ribonucleoproteins. Proc Natl Acad Sci USA 90:7250–7254

    Article  PubMed  CAS  Google Scholar 

  • Perreault J, Noël JF, Brière F, Cousineau B, Lucier JF, Perreault JP, Boire G (2005) Retropeudogenes derived from human Ro/SS-A autoantigen-associated hY RNAs. Nucleic Acids Res 33:2032–2041

    Article  PubMed  CAS  Google Scholar 

  • Perreault J, Perreault JP, Boire G (2007) The Ro associated Y RNAs in metazoans: evolution and diversification. Mol Biol Evol under review

  • Prochnik SE, Rokhsar DS, Aboobaker AA (2007) Evidence for a microRNA expansion in the bilaterian ancestor. Dev Genes Evol 217:73–77

    Article  PubMed  CAS  Google Scholar 

  • Prujin GJM, Wingens PAETM, Peters SLM, Thijsen JPH, van Venrooij WJ (1993) Ro RNP associated Y RNAs are highly conserved among mammals. Biochim Biophys Acta 1216:395–401

    Google Scholar 

  • Rutjes SA, Lund E, van der Heijden A, Grimm C, van Venrooij WJ, Pruijn GJM (2001) Identification of a novel cis-acting RNA element involved in nuclear export of hY RNAs. RNA 7:741–752

    Article  PubMed  CAS  Google Scholar 

  • Sempere LF, Cole CN, McPeek MA, Peterson KJ (2006) The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. J Exp Zoolog B Mol Dev Evol 306B:575–588

    Article  CAS  Google Scholar 

  • Simons FH, Rutjes SA, van Venrooij WJ, Pruijn GJ (1996) The interactions with Ro60 and La differentially affect nuclear export of hY1 RNA. RNA 2:264–273

    PubMed  CAS  Google Scholar 

  • Tanzer A, Stadler PF (2004) Molecular evolution of a microRNA cluster. J Mol Biol 339:327–335

    Article  PubMed  CAS  Google Scholar 

  • Teunissen SWM, Kruithof MJM, Farris AD, Harley JB, van Venrooij WJ, Pruijn GJM (2000) Conserved features of Y RNAs: a comparison of experimentally derived secondary structures. Nucleic Acids Res 28:610–619

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgs DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties, and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Weber MJ (2006) Mammalian small nucleolar RNAs are mobile genetic elements. PLoS Genet 2(12):e205

    Article  PubMed  Google Scholar 

  • Zemann A, op de Bekke A, Kiefmann M, Brosius J, Schmitz J (2006) Evolution of small nucleolar RNAs in nematodes. Nucleic Acids Res 34:2676–2685

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Discussions with Michael M. Müller are gratefully acknowledged. This work has been funded, in part, by the German DFG Bioinformatics Initiative BIZ-6/1-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Mosig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mosig, A., Guofeng, M., Stadler, B.M.R. et al. Evolution of the vertebrate Y RNA cluster. Theory Biosci. 126, 9–14 (2007). https://doi.org/10.1007/s12064-007-0003-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-007-0003-y

Keywords

Navigation