Skip to main content

Advertisement

Log in

Are the energy savings of the passive house standard reliable? A review of the as-built thermal and space heating performance of passive house dwellings from 1990 to 2018

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

The Passive House (PH) standard is a voluntary quality assurance standard focused upon maximising the health and wellbeing of occupants, whilst reducing space heating demand to a very low level. To meet the PH standard, well-defined criteria have to be met. However, given literature that suggests a ‘performance gap’ for energy savings, the question remains, how well do PH dwellings perform in situ? This paper presents results from in situ building fabric thermal performance measurements, along with a comparison between the design intent and the measured space heating energy used by over 2000 newly built and retrofitted PH dwellings. The results reveal the in situ thermal performance of the building fabric is close to the design predictions. Within space heating measurements, a standard deviation of up to 50% has to be attributed to the broad spectrum of user behaviour; this is not specific for PH, but a general observation. Despite this, the average values for the PH developments ranged within the uncertainty of the demand calculations. With over 2000 PH dwellings averaging a space heating energy consumption of 14.6 kWh/(m2a), the in situ performance is close to the original design intent and extraordinary low compared to the consumption in ordinary buildings. The results suggest the PH standard is capable of producing dwellings in a verifiable manner. This means, on average, the in situ thermal performance of the building fabric and the energy consumption for space heating match the design intent, i.e. there is no significant ‘performance gap’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. NZEB is a building that has a very high energy performance: The nearly zero or very low amount of energy required should to a very significant extent be covered by energy from renewable sources, including renewable energy produced on-site or nearby.

  2. Since not all effects contributing to the uncertainty of the heating energy demand and the uncertainties themselves do have uncertainties the total uncertainty in heating demand was rounded to 3 kWh/(m2a).

References

  • Feist (2004a). Temperaturdifferenzierung in der Wohnung. Passivhaus Institut, Darmstadt, 2004 Research group cost-efficient passive houses, volume 25: Temperature differentiation in an apartment. Passive House Institute.

  • Bagge, H., & Johansson, D. (2013). Prediction and verification of energy performance in energy efficient multi-family dwellings. 2013. ASHRAE Transactions., 119(2), 1–8.

    Google Scholar 

  • Bundesministerium für Wirtschaft (BMWi) (2018). Energiedaten: Gesamtausgabe. Stand 14.8.2018. https://www.bmwi.de/Redaktion/DE/Artikel/Energie/energiedaten-gesamtausgabe.html Accessed 6 January 2019).

  • Brooke-Peat, M. (2015). Personal communication. Leeds: Leeds Beckett University.

    Google Scholar 

  • BSI. (2014). BS EN ISO 9869-1:2014 Thermal insulation—building elements—in-situ measurement of thermal resistance and thermal transmittance part 1: Heat flow meter method. London: British Standards Institution.

    Google Scholar 

  • Butler, D., Dengle, A. (2013). Review of co-heating test methodologies. Report F54. NHBC Foundation.

  • BRE (2014). Solid wall heat losses and the potential for energy saving, Literature Review. London

  • Cambridge Architectural Research Ltd. (CAR 2011). (2011). 450023 Camden Passivhaus—final report, domestic buildings, phase 1: post construction and early occupation. A report to Innovate UK as part of the building performance evaluation Programme. Internet digital catapult, London. Available online: http://buildingdataexchange.org.uk/report/Camden+Passivhaus/811/ . Accessed 21 June 2018.

  • Cambridge Architectural Research Ltd. (CAR 2012) (2012). 450019 Future works Passivhauses—Final report, Domestic Buildings, Phase 1: Post construction and early occupation. A report to Innovate UK as part of the Building Performance Evaluation Programme. Internet Digital Catapult, London. Available online: http://buildingdataexchange.org.uk/report/Future+Works+Passivhaus/807/ .Accessed 21 June 2018.

  • Choice Housing (2014). 450080 Dungannon Passivhaus—final report, domestic buildings phase 2: in-use performance & post occupancy evaluation. A report to Innovate UK as part of the building performance evaluation Programme. Internet Digital Catapult, London. Available online: https://buildingdataexchange.org.uk/report/Dungannon+Passivhaus/848/ . Accessed: 21 June 2018.

  • Ebel, W., W. Feist (1997).Ergebnisse zum Stromverbrauch im Passivhaus Darmstadt Kranichstein. In: Protokollband Nr. 7 des Arbeitskreises kostengünstige Passivhäuser, pp. III/1 – III/18 Passivhaus Institut, Darmstadt.

  • Ebel W., Großklos M., Knissel J., Loga T., Müller K. (2003). Wohnen in Passiv- und Niedrigenergiehäusern – Eine vergleichende Analyse der Nutzungsfaktoren am Beispiel der „Gartenhofsiedlung Lummerlund“ in Wiesbaden-Dotzheim, Final Report; (German only) IWU, Darmstadt.

  • Energy Performance of Buildings Directive (EPBD) by European Comission, (2012). Accessed 18 January 2019 https://ec.europa.eu/energy/en/content/energy-performance-buildings-directive-epbd

  • Feist, W., J. Werner (1994). Energiekennwert < 32 kWh/(m2a). In: Bundesbaublatt, Feb. 1994.

  • Feist, W. (1997a). Passive House Darmstadt Kranichstein: planning, construction, results. In Technical information PHI-1997/4EN. Passive House Institute: Darmstadt.

    Google Scholar 

  • Feist, W. (1997b). Meßergebnisse zur Nutzerstreuung des Energieverbrauchs bei ausgewerteten Bauprojekten. In: Nutzerverhalten, Protokollband Nr. 9 des Arbeitskreises kostengünstige Passivhäuser Phase II; pp. III.1 – III.23, Passivhaus Institut; Darmstadt.

  • Feist, W (1997c). Meßergebnisse und ihre wissenschaftliche Auswertung im 1. Passivhaus Kranichstein. In: Meßtechnik und Meßergebnisse, Protokollband des Arbeitskreises kostengünstige Passivhäuser Phase II Nr. 10.pp.II/1 – II/19, Passivhaus Institut, Darmstadt.

  • Feist, W. (1997d).Passive house Darmstadt Kranichstein: Planning, construction, Results. Technical information.

  • Feist, W.(1998). Cost Efficient Passive Houses in Central European Climate. 1998 ACEEE Summer Study on Energy Efficiency in Buildings, proceedings. https://aceee.org/files/proceedings/1998/data/papers/0508.pdf.

  • Feist W., Loga T., Großklos M. (2000). Durch Messungen bestätigt – Jahresheizenergieverbrauch bei 22 Passivhäusern in Wiesbaden unter 15 kWh/m2 Wohnfläche (German only; annual energy consumption less than 15 kWh/m2 in 22 passive houses in Wiesbaden - confirmed by measurements.

  • Feist, W.(2001). Stellungnahme zur Vornorm DIN V 4108 Teil 6:2001 aus Sicht der Passivhausentwicklung, CEPHEUS-Projektinformation Nr. 39, Fachinformation PHI-2001/10. Passivhaus Institut, Darmstadt.

  • Feist, W. (2004b). Wärmeübergabeverluste im Lichte der Baupraxis. In: Wärmeübergabe- und Verteilverluste im Passivhaus; Protokollband Nr. 28 des Arbeitskreises kostengünstige Passivhäuser Phase III, pp. 123–156 Passivhaus Institut; Darmstadt.

  • Feist, W., Schnieders, J., Dorer, V., & Haas, A. (2005a). Re-inventing air heating: Convenient and comfortable within the frame of the passive house concept. Energy and Buildings, 37, 1186–1203.

    Article  Google Scholar 

  • Feist W., Peper S., Kah O., von Oesen M (2005b). Climate neutral passive house estate in Hannover-Kronsberg: construction and measurement results, PEP-Projectinformation Nr. 1; Pro Klima Hannover.

  • Feist, W., Pfluger, R., Hasper, W. (2019). Durability of building fabric components and ventilation Systems in Passive Houses; In Energy Efficiency Journal, 2019.

  • Feist W., Ebel W., Peper S., Hasper W. (2016). Long-term experience and measurements from the first passive house building in Darmstadt-Kranichstein. Proceedings of the 20th International Passive House Conference 2016 in Darmstadt, pp.273–281. Passive House Institute, Darmstadt.

  • Feist, W., Loga, T.(1997). Vergleich von Messung und Simulation. In: Energiebilanzen und Temperaturverhalten, Protokollband Nr. 5 des Arbeitskreises kostengünstige Passivhäuser, pp. 29–63. Passivhaus Institut, Darmstadt 1997.

  • Feist, W., & Werner, J. (1993). Erste Messergebnisse aus dem Passivhaus Darmstadt Kranichstein, gi, 114 Heft 5. Seiten, 240–249.

  • Fox, M. (2012). Passivhaus development inspection report. Plymouth: University of Plymouth.

    Google Scholar 

  • Gaia Research (2015). 4 50072 Plummerswood - final report, Domestic Buildings Phase 2: In-use performance & post occupancy evaluation. A report to Innovate UK as part of the Building Performance Evaluation Programme. Internet Digital Catapult, London. Available online: https://buildingdataexchange.org.uk/wp-content/uploads/2015/11/450072-Plummerswood.pdf Accessed 10 July 2018.

  • Gale & Snowden Architects Limited (2014a) 450065 knights place Passivhaus Housing for Exeter City Council - final report, Domestic Buildings Phase 2: In-use performance & post occupancy evaluation. A report to Innovate UK as part of the Building Performance Evaluation Programme. Internet Digital Catapult, London. Available online: https://buildingdataexchange.org.uk/wp-content/uploads/2015/11/450065-Knights-Place-Passivhaus-Housing-for-Exeter-City-Council.pdf Accessed 10 July 2018.

  • Gale & Snowden Architects Limited (2014b). 450076 rowan house Passivhaus Housing for Exeter City Council - final report, Domestic Buildings Phase 2: In-use performance & post occupancy evaluation. A report to Innovate UK as part of the Building Performance Evaluation Programme. Internet Digital Catapult, London. Available online: https://buildingdataexchange.org.uk/wp-content/uploads/2015/11/450076-Rowan-House-Passivhaus-Housing-for-Exeter-City-Council.pdf Accessed 10 July 2018.

  • Galvin, R. (2014). Making the ‘rebound effect’ more useful for performance evaluation of thermal retrofits of existing homes: defining the ‘energy savings deficit’ and the ‘energy performance gap’. Energy and Buildings, Volume 69, February 2014, pp 515–524.

  • Grove-Smith J., Krick B., Feist W. (2015). Balancing energy efficiency and renewables, 9th international conference improving energy efficiency in commercial buildings and smart communities, conference proceedings, pp 894–902.

  • Grove-Smith, J., Aydin, V., Feist, W., Schnieders, J., & Thomas, S. (2018). Standards and policies for very high energy efficiency in the urban building sector towards reaching the 1.5 C target. Current Opinion in Environmental Sustainability, 2018(30), 103–114.

    Article  Google Scholar 

  • Glasgow School of Art (2015) 450097 Dormont Park Passivhaus Project—final report, domestic buildings phase 2: In-use performance & post occupancy evaluation. A report to Innovate UK as part of the Building Performance Evaluation Programme. Internet Digital Catapult, London. Available online: https://buildingdataexchange.org.uk/wp-content/uploads/2015/11/450097-Dormont-Park-Passivhaus-Project.pdf. Accessed 10 July 2018.

  • Guerra-Santin, O., Tweed, C., Jenkins, H., & Jiang, S. (2013). Monitoring the performance of low energy dwellings: two UK case studies. Energy and Buildings, 2013, 64, 32–40.

    Article  Google Scholar 

  • Gupta, R., & Kotopouleas, A. (2018). Magnitude and extent of building fabric thermal performance gap in UK low energy housing. Applied Energy, 222, 673–686.

    Article  Google Scholar 

  • Hens, H., Janssens, A., Depraetere, W., Carmeliet, J., & Lecompte, J. (2007). Brick cavity walls: a performance analysis based on measurements and simulations. Journal of Building Physics, 31(2), 95–124.

    Article  Google Scholar 

  • IPCC (2018). Special report on 1.5 degrees available online: http://www.ipcc.ch/report/sr15/index_background.shtml. Accessed 10 October 2018.

  • Jack, R., Loveday, D., Allinson, D., & Lomas, K. (2017). First evidence for the reliability of co-housing tests. Building Research & Information, 46(4), 383–401.

    Article  Google Scholar 

  • Johnston, D., Stevenson F. (2013). TSB BPE Project 450095—Lancaster co-housing development: TSB BPE Phase 1 final report. A report to the Technology Strategy Board as part of the Technology Strategy Board’s Building Performance Evaluation Programme. March 2013, Centre for the Built Environment (CeBE), Leeds Metropolitan University, Leeds, UK.

  • Johnston, D., Fletcher M. (2013). TSB BPE Project 450014 – Gentoo Passivhaus Development: TSB BPE Phase 1 final report. A report to the Technology Strategy Board as part of the Technology Strategy Board’s Building Performance Evaluation Programme. July 2013, Centre for the Built Environment (CeBE), Leeds Metropolitan University, Leeds, UK.

  • D. Johnston, D. Farmer, M. Brooke-Peat & D. Miles-Shenton (2014). Bridging the domestic building fabric performance gap, Building Research & Information, link: https://doi.org/10.1080/09613218.2014.979093.

  • Johnston, D., Miles-Shenton, D., & Farmer, D. (2015). Quantifying the domestic building fabric ‘performance gap’. BSER&T, 36, 614–627.

    Google Scholar 

  • Johnston, D., Miles-Shenton, D., Farmer, D., & Wingfield, J. (2013). Whole house heat loss test method (coheating). Leeds: Leeds Metropolitan University.

    Google Scholar 

  • Johnston, D., & Siddall, M. (2016). The building fabric thermal performance of Passivhaus dwellings—does it do what it says on the tin? Sustainability, 8(1), 97. https://doi.org/10.3390/su8010097.

    Article  Google Scholar 

  • Kah, O., Feist, W.(2008). Bewertung energetischer Anforderungen im Lichte steigender Energiepreise für die EnEV und die KfW-Förderung. Projekt-Nr. 10.8.17.7–06.13 Studie im Auftrag des Bundesministeriums für Verkehr, Bau und Stadtentwicklung sowie des Bundesamtes für Bauwesen und Raumordnung, Februar 2008.

  • Kessler, A., (2017). Erfolgskontrolle – Passivhaus im Bestand – Tatsächlicher Heizwärmeverbrauch bei vom Land Hessen geförderten Gebäuden, Protokollband Nr. 52 des Arbeitskreises kostengünstige Passivhäuser Phase V; pp.133–142. Passivhaus Institut; Darmstadt.

  • Linktreat (2014). 450038 Hastoe HA - 14 Passivhaus at Wimbish—final report, Domestic Buildings Phase 2: In-use performance & post occupancy evaluation. A report to Innovate UK as part of the Building Performance Evaluation Programme. Internet Digital Catapult, London. Available online: https://buildingdataexchange.org.uk/report/Hastoe+HA+-+14+Passivhaus+at+Wimbish/932/ Accessed 21 June 2018.

  • Loga, T., Müller, K., & Menje, H. (1997). Die Niedrigenergiesiedlung Distelweg in Niedernhausen, Ergebnisse des Messprogramms (German only; The low energy settlement Distelweg in Niedernhausen, Results of the monitoring programme), 1st edition, IWU.

  • Lundström E. (1986) Occupant influence on energy consumption in single-family dwellings D5: Swedish Council for Building Research, Stockholm.

  • Manioglu, G. Wouters, J. Meulenaer, V. De Hens, H. (2007). Thermal performance of a passive house: Measurements and simulation. Proceedings Performance of the Exterior Envelopes of Whole Buildings X. ASHRAE, Florida, pp. 1–8.

  • Meulenaer V, De Veken J, Van Der Verbeek G, Hens H. (2005) Comparison of measurements and simulations of a “passive house”. In Building Simulation 2005, 9th international IBPSA conference. Montreal, Canada, august 15-18, 2005. pp. 769–776.

  • Mitchel, R.; Natarajan, S.: Providing Passivhaus: post occupancy evaluation of certified Passivhaus homes in the UK, 2018, Passive House Conference 2018, pp. 531–536.

  • NBS. (2006). The building regulations 2000 approved document part L1A: conservation of fuel and power in new dwellings (2006th ed.). UK: NBS. London.

    Google Scholar 

  • Ottinger, O., Jürgen, S, Wolfgang, H., Wolfgang, F. (2016). Determination of the heat loss coefficient (HLC) of a passive house. In: Messtechnische Bestimmung der Wärmeverlustkoeffizienten von Passivhaus-Wohngebäuden. Passivhaus Institut, Germany.

  • Pelsmakers, S., Fitton, R., Biddulph, P., Swan, W., Croxford, B., Stamp, S., Calboli, F., Shipworth, D., Lowe, R., & Elwell, C. A. (2017). Heat-flow variability of suspended timber ground floors: implications for in-situ heat-flux measuring. Energy and Buildings, 138, 396–405.

    Article  Google Scholar 

  • Peper, S.; Grove-Smith, J.; Feist, W. (2009). Sanierung mit Passivhauskomponenten Messtechnische Untersuchung und Auswertung Tevesstraße Frankfurt a.M. Passivhaus Institut, Darmstadt, 2009.

  • Peper 2014 EuroPHit; D2.6 Concept for a minimal monitoring of different buildings undergoing step-by-step energy-efficient refurbishment. Attachment from page 37. can be downloaded at: https://europhit.eu/sites/europhit.eu/files/EuroPHit_D2.6_ConceptForAMinimalMonitoring.pdf

  • Peper S.(2015): Building monitoring basics and guidelines, basis for monitoring in SINFONIA project, can be downloaded at: http://www.sinfonia-smartcities.eu.

  • Peper, S.; Feist, W.(2001). Thermographische Untersuchung der Passivhaussiedlung in Hannover Kronsberg, Wissenschaftliche Auswertung, Fachinformation PHI-2001/7, CEPHEUS-Projektinformation Nr. 20. Passivhaus Institut, Darmstadt, 2001.

  • Peper, S., & Feist, W. (2002). Klimaneutrale Passivhaussiedlung Hannover-Kronsberg. Endbericht, Hannover: Analyse im dritten Betriebsjahr.

    Google Scholar 

  • Peper S., Feist, W.(2015). Energy efficiency of the Passive House Standard: Expectations confirmed by measurements in practice, Passive House Institute, 2015, can be downloaded at http:/www.passiv.de

  • Peper, S.; Feist, W.; Kah, O.(2001). Messtechnische Untersuchung und Auswertung – Klimaneutrale Passivhaussiedlung Hannover-Kronsberg, PHI, Hannover 2001.

  • Peper, S.; Kah, O.; Feist, W.(2005). Zur Dauerhaftigkeit von Luftdichtheitskonzepten bei Passivhäusern – Feldmessungen, Endbericht. IEA SHC TASK 28 / ECBCS ANNEX 38. Passivhaus Institut, Darmstadt, 2005 .Durability of airtightness concepts for Passive Houses – field surveys, final report. IEA SHC TASK 28 / ECBCS ANNEX 38. Passive House Institute, Darmstadt, 2005. (German only).

  • PH Trust (2017). The performance of Passivhaus in new construction: post occupancy evaluation of certified Passivhaus dwellings in the UK: Early Results Internet, Passivhaus Trust, London Available online: http://www.passivhaustrust.org.uk/UserFiles/File/Technical%20Papers/The%20performance%20of%20Passivhaus%20in%20new%20construction_July%202017%20V2.pdf. Accessed 10 October 18.

  • Passive House Institute (2016). Criteria for the passive house, EnerPHit and PHI Low Energy Building Standard, Passive House Institute, 2016. Accessed 18 January 2019 https://passiv.de/downloads/03_building_criteria_en.pdf.

  • Passive House Planning Tool (PHPP) W. Feist et al. (2015) PHPP Passivhaus Projektierungs Paket Version 9 (2015). Anforderungen an qualitätsgeprüfte Passivhäuser; Passivhaus Institut; Darmstadt.

  • Randall S (2012) Passivhaus at Ford Close, St Ive, Cornwall. (Internet) Randall Simmonds, Available online: http://www.randallsimmonds.co.uk/wp-content/uploads/2012/09/Passivhaus-Brochure.pdf. Accessed 21 June 2018.

  • Reiß J., Erhorn H.(2003). Messtechnische Validierung des Energiekonzeptes einer großtechnisch umgesetzten Passivhausentwicklung in Stuttgart-Feuerbach, IBP report WB 117/2003, Fraunhofer Institute for Building Physics, Stuttgart.

  • Schnieders, J. (2003). CEPHEUS—measurement results from more than 100 dwelling units in passive houses. European Council for an Energy Efficient Economy (ECEEE) summer study. Stockholm, Sweden.

  • Schnieders, J., & Andreas, H. (2006). CEPHEUS results: measurements and occupants’ satisfaction provide evidence for passive houses being an option for sustainable building. Energy Policy, 34(2), 151–171.

    Article  Google Scholar 

  • Schnieders, J (2012). Messgenauigkeit und Fehlergrößen. In: Richtig messen in Energiesparhäusern, Protokollband Nr. 45 des Arbeitskreises kostengünstige Passivhäuser Phase V; pp.57–80. Passivhaus Institut; Darmstadt.

  • Schnieders, J et al.. (2019) Design and realization of the passive house concept in different climate zones. Energy Efficiency Journal.

  • Schnieders, J.; Feist, W.;Pfluger, R. Kah, O. et al. (2001), CEPHEUS Wissenschaftliche Begleitung und Auswertung. Endbericht; CEPHEUS-Projektinformation Nr. 22. Passivhaus Institut. Darmstadt, Juli 2001.

  • Siddall, M. Trinick J. and Johnston D. (2013) Testing the real heat loss of a Passivhaus building: Can the UK’s energy performance gap be bridged? Proceedings of the International Passivhaus Conference, Frankfurt.pp 159–166.

  • Stafford, A. Bell, M. and Gorse, C. (2012). Building confidence—a working paper. Centre for low carbon futures report no. 008. York: The Centre for low Carbon Futures, http:// www.lowcarbonfutures.org/reports/research-reports? Page¼1 (march 2012). Accessed 24 March 2014.

  • Stamp, S. (2015). Assessing uncertainty in co-heating test: calibrating a whole building steady state heat loss measurement method. PhD Thesis, University College London (UCL), London, UK.

  • Thomsen, K. E., Schultz, J. M., & Poel, B. (2005). Measured performance of 12 demonstration projects—IEA Task 13 “advanced solar low energy buildings”. Energy and Buildings, 37(2), 111–119.

    Article  Google Scholar 

  • The Technology Strategy Board (TSB). (2010). Building performance evaluation, domestic buildings—guidance for project execution. Swindon, UK: The Technology Strategy Board.

    Google Scholar 

  • Wingfield, J. Johnston, D. Miles-Shenton, D. and Bell, M. (2010) Whole house heat loss test method (Coheating). Internet, 2010, Leeds, Leeds Metropolitan University. Available online: http://www.leedsbeckett.ac.uk/as/cebe/projects/coheating_test_protocol.pdf. Accessed 21 June 2018.

  • Zero Carbon Hub (ZCH) (2010) Carbon compliance for tomorrow’s new homes: a review of the modelling tool and assumptions. Topic 4: closing the gap between designed and built performance. Internet London, Zero Carbon Hub. Available from: http://www.zerocarbonhub.org/sites/default/files/resources/reports/Carbon_Compliance_Topic%204_Closing_the_Gap_Between_DvAB.pdf. Accessed 19 June 2018.

  • Zero Carbon Hub (ZCH) (2014) Closing the gap between design and as-built performance: end of term report. Internet, London: Zero Carbon Hub, Available from: http://www.zerocarbonhub.org/sites/default/files/resources/reports/Design_vs_As_Built_Performance_Gap_End_of_Term_Report_0.pdf. Accessed 19 June 2018.

  • Ziesing, H.J.(2018). Anwendungsbilanzen für die Endenergiesektoren in Deutschland in den Jahren 2013 bis 2017. Arbeitsgemeinschaft Energiebilanzen, Berlin.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soeren Peper.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnston, D., Siddall, M., Ottinger, O. et al. Are the energy savings of the passive house standard reliable? A review of the as-built thermal and space heating performance of passive house dwellings from 1990 to 2018. Energy Efficiency 13, 1605–1631 (2020). https://doi.org/10.1007/s12053-020-09855-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-020-09855-7

Keywords

Navigation