Skip to main content

Advertisement

Log in

The influence of design and everyday practices on individual heating and cooling behaviour in residential homes

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

Emerging results from practice-based research demonstrate that energy efficient houses often do not meet theoretical energy use based on the current standards of residential buildings. A factor influencing this inconsistency is related to user behaviour and everyday practices. The objective of this research is to uncover some of the complexities associated with the practices of heating and cooling in the home, which are influenced by motivations, knowledge and technologies, including the use of photovoltaic panels. For this purpose, ten Australian houses were established as embedded Living Labs and monitored for over a year. The results confirm the variation of energy use in houses; in this case, similar designs vary by up to 33%. The type of heating and cooling systems that houses rely on through the year was found to be a major determinant in energy use. However, energy variation between houses is also linked to intra-home practices and behaviours. This research found that individuals living in the same house may have different motivations and/or heating and cooling practices, affecting the overall energy use. For instance, one individual who is motivated to save on energy bills might turn on appliances during the day to make the most of solar panels or use the heater for brief periods of time, whilst another inhabitant of the same house might turn on the heater for extended periods out of habit or to achieve a hedonic experience. The adoption of an explanatory design mixed-method approach to study everyday practices in the home showed that the routines, household configuration, technology and varied occupant motivations impact on the practice of ambient heating and cooling, impacting its regularity, duration, time of the day and intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abrahamse, W., Steg, L., Vlek, C., & Rothengatter, T. (2005). A review of intervention studies aimed at household energy conservation. Journal of Environmental Psychology, 25(3), 273–291. doi:10.1016/j.jenvp.2005.08.002.

    Article  Google Scholar 

  • ABS (2016). Employment in renewable energy activities, Australia, 2014–2015, cat. no. 4631.0. http://www.abs.gov.au/AUSSTATS/abs@.nsf/Latestproducts/4631.0Main%20Features12014-15?opendocument&tabname=Summary&prodno=4631.0&issue=2014-15&num=&view=. Accessed 09 November 2016.

  • Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. doi:10.1016/0749-5978(91)90020-T.

    Article  Google Scholar 

  • Ambrose, M., & Syme, M. (2015). House energy efficiency inspections project—final report. Australia: CSIRO.

    Google Scholar 

  • Ambrose, M., James, M., Law, A., Osman, P., & White, S. (2013). The evaluation of the 5-star energy efficiency standard for residential buildings. Australia: CSIRO.

    Google Scholar 

  • ATCO. (2014). Gas demand forecast, mid-west and south-west distribution system. Jandakot: ATCO Gas Australia.

    Google Scholar 

  • Berry, S., Davidson, K., & Saman, W. (2013). Defining zero carbon and zero energy homes from a performance-based regulatory perspective. Energy Efficiency, 7(2), 303–322. doi:10.1007/s12053-013-9225-7.

    Article  Google Scholar 

  • Blight, T. S., & Coley, D. A. (2013). Sensitivity analysis of the effect of occupant behaviour on the energy consumption of passive house dwellings. Energy and Buildings, 66, 183–192. doi:10.1016/j.enbuild.2013.06.030.

    Article  Google Scholar 

  • Brynjarsdóttir, H., Håkansson, M., Pierce, J., Baumer, E. P. S., & DiSalvo, C. (2012). Sustainably unpersuaded: how persuasion narrows our vision of sustainability. In: SIGCHI Conference on Human Factors in Computing Systems. Austin, Texas, USA.

  • Burbridge, M., Morrison, G. M., van Rijn, M., Sylvester, S., Keyson, D., Virdee, L., et al. (2017). Business models for sustainability in living labs. In D. V. Keyson, O. Guerra-Santin, & D. Lockton (Eds.), Living labs design and assessment of sustainable living. Berlin: Springer.

    Google Scholar 

  • Bureau of Meteorology (2017). Climate statistics for Australian locations. http://www.bom.gov.au/climate/averages/tables/cw_009017.shtml. Accessed 27 February 2017.

  • Burgess, J., & Nye, M. (2008). Re-materialising energy use through transparent monitoring systems. Energy Policy, 36(12), 4454–4459. doi:10.1016/j.enpol.2008.09.039.

    Article  Google Scholar 

  • Cialdini, R. B., Kallgren, C. A., & Reno, R. R. (1991). A focus theory of normative conduct: a theoretical refinement and reevaluation of the role of norms in human behavior. In P. Z. Mark (Ed.), Advances in experimental social psychology (Vol. 24, pp. 201–234). Cambridge: Academic Press.

    Google Scholar 

  • Cresswell, J. W. (2007). Choosing a mixed methods design. In J. W. Cresswell & V. L. Plano Clark (Eds.), Designing and conducting mixed methods research. California: Sage Publications.

    Google Scholar 

  • Creswell, J., & Plano, V. (2011). Designing and conducting mixed methods research (2nd ed.. edn., mixed methods research). Los Angeles, Calif.: Los Angeles, Calif.: SAGE publications.

  • DEE (2012). Nationwide house energy rating scheme (nathers)—software accreditation protocol. In D. o. E. a. Energy (Ed.).

  • DEWHA (2008). Energy Use in the Australian Residential Sector 1986–2020. In W. Department of the Environment, Heritage, & a. t. Arts (Eds.).

  • Elfstrand, P., Morrison, G. M., Toups, L., & Hagy, S. (2017). The storyline for the design process that shaped the HSB Living Lab. In D. V. Keyson, O. Guerra-Santin, & D. Lockton (Eds.), Living Labs design and assessment of sustainable living. Berlin: Springer.

    Google Scholar 

  • Eon, C., Morrison, G., & Byrne, J. (2017). Unraveling everyday heating practices in residential homes. Energy Procedia.

  • Festinger, L. (1957). A theory of cognitive dissonance. United States of America: Row, Peterson and Company.

    Google Scholar 

  • Fischer, C. (2008). Feedback on household electricity consumption: a tool for saving energy? Energy Efficiency, 1(1), 79–104. doi:10.1007/s12053-008-9009-7.

    Article  Google Scholar 

  • Foulds, C., Powell, J., & Seyfang, G. (2013). Investigating the performance of everyday domestic practices using building monitoring. Building Research & Information, 41(6), 622–636. doi:10.1080/09613218.2013.823537.

    Article  Google Scholar 

  • Gill, Z. M., Tierney, M. J., Pegg, I. M., & Allan, N. (2010). Low-energy dwellings: the contribution of behaviours to actual performance. Building Research & Information, 38(5), 491–508. doi:10.1080/09613218.2010.505371.

    Article  Google Scholar 

  • Gram-Hanssen, K. (2012). Efficient technologies or user behaviour, which is the more important when reducing households’ energy consumption? Energy Efficiency, 6(3), 447–457. doi:10.1007/s12053-012-9184-4.

    Article  Google Scholar 

  • Gram-Hanssen, K. (2014). New needs for better understanding of household’s energy consumption—behaviour, lifestyle or practices? Architectural Engineering and Design Management, 10(1–2), 91–107. doi:10.1080/17452007.2013.837251.

    Article  Google Scholar 

  • Guerra-Santin, O., Itard, L., & Visscher, H. (2009). The effect of occupancy and building characteristics on energy use for space and water heating in Dutch residential stock. Energy and Buildings, 41(11), 1223–1232. doi:10.1016/j.enbuild.2009.07.002.

    Article  Google Scholar 

  • Guerra-Santin, O. (2017). Relationship between building technologies, energy performance and occupancy in domestic buildings. In D. V. Keyson, O. Guerra-Santin, & D. Lockton (Eds.), Living labs design and assessment of sustainable living. Berlin: Springer.

    Google Scholar 

  • Guerra-Santin, O., Romero Herrera, N., Cuerda, E., & Keyson, D. (2016). Mixed methods approach to determine occupants’ behaviour—analysis of two case studies. Energy and Buildings, 130, 546–566. doi:10.1016/j.enbuild.2016.08.084.

    Article  Google Scholar 

  • Gynther, L., Mikkonen, I., & Smits, A. (2011). Evaluation of European energy behavioural change programmes. Energy Efficiency, 5(1), 67–82. doi:10.1007/s12053-011-9115-9.

    Article  Google Scholar 

  • Hens, H. (2010). Energy efficient retrofit of an end of the row house: confronting predictions with long-term measurements. Energy and Buildings, 42(10), 1939–1947. doi:10.1016/j.enbuild.2010.05.030.

    Article  Google Scholar 

  • Herrera, N. (2017). The emergence of Living Lab methods. In D. V. Keyson, O. Guerra-Santin, & D. Lockton (Eds.), Living labs design and assessment of sustainable living. Berlin: Springer.

    Google Scholar 

  • Huebner, G. M., Cooper, J., & Jones, K. (2013). Domestic energy consumption—what role do comfort, habit, and knowledge about the heating system play? Energy and Buildings, 66, 626–636. doi:10.1016/j.enbuild.2013.07.043.

    Article  Google Scholar 

  • IMO. (2014). SWIS electricity demand outlook. Perth: Independent Market Operator.

    Google Scholar 

  • Kallio, H., Pietilä, A.-M., Johnson, M., & Kangasniemi, M. (2016). Systematic methodological review: developing a framework for a qualitative semi-structured interview guide. Journal of Advanced Nursing. doi:10.1111/jan.13031.

  • Keyson, D. V., Guerra-Santin, O., & Lockton, D. (2017). Living Labs design and assessment of sustainable living. Switzerland: Springer International Publishing.

    Google Scholar 

  • Kumar, S., Mathur, J., Mathur, S., Singh, M. K., & Loftness, V. (2016). An adaptive approach to define thermal comfort zones on psychrometric chart for naturally ventilated buildings in composite climate of India. Building and Environment, 109, 135–153. doi:10.1016/j.buildenv.2016.09.023.

    Article  Google Scholar 

  • Leminen, S., & Westerlund, M. (2012). Towards innovation in Living Labs networks. Int. J. of Product Development, 17(1/2). doi:10.1504/IJPD.2012.051161.

  • Leminen, S., Nyström, A.-G., & Westerlund, M. (2015). A typology of creative consumers in living labs. Journal of Engineering and Technology Management, 37, 6–20. doi:10.1016/j.jengtecman.2015.08.008.

    Article  Google Scholar 

  • Liedtke, C., Jolanta Welfens, M., Rohn, H., & Nordmann, J. (2012). LIVING LAB: user-driven innovation for sustainability. International Journal of Sustainability in Higher Education, 13(2), 106–118. doi:10.1108/14676371211211809.

    Article  Google Scholar 

  • Liedtke, C., Baedeker, C., Hasselkuß, M., Rohn, H., & Grinewitschus, V. (2015). User-integrated innovation in sustainable Living Labs: an experimental infrastructure for researching and developing sustainable product service systems. Journal of Cleaner Production, 97, 106–116. doi:10.1016/j.jclepro.2014.04.070.

    Article  Google Scholar 

  • Lockton, D. (2017). Design with intent and the field of design for sustainable behaviour. In D. V. Keyson, O. Guerra-Santin, & D. Lockton (Eds.), Living Labs design and assessment of sustainable living. Berlin: Springer.

    Google Scholar 

  • Lopes, M. A. R., Antunes, C. H., & Martins, N. (2012). Energy behaviours as promoters of energy efficiency: a 21st century review. Renewable and Sustainable Energy Reviews, 16(6), 4095–4104. doi:10.1016/j.rser.2012.03.034.

    Article  Google Scholar 

  • Lucon, O., Ürge-Vorsatz, D., Ahmed, A. Z., Akbari, H., Bertoldi, P., Cabeza, L. F., et al. (2014). Buildings. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, & J. C. Minx (Eds.), Climate change 2014: mitigation of climate change contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

    Google Scholar 

  • Manu, S., Shukla, Y., Rawal, R., Thomas, L. E., & de Dear, R. (2016). Field studies of thermal comfort across multiple climate zones for the subcontinent: India model for adaptive comfort (IMAC). Building and Environment, 98, 55–70. doi:10.1016/j.buildenv.2015.12.019.

    Article  Google Scholar 

  • McGee, C. (2013). Your home: Australia’s guide to environmentally sustainablehomes (5th ed.). Canberra: Department of Industry and Science.

    Google Scholar 

  • McKenzie-Mohr, D., & Smith, W. (1999). Fostering sustainable behavior: an introduction to community-based social marketing. In Education for sustainability (1 edition ed.). Gabriola Island: New Society Publishers.

    Google Scholar 

  • Nolan, J. M., Schultz, P. W., Cialdini, R. B., Goldstein, N. J., & Griskevicius, V. (2008). Normative social influence is underdetected. Personality and Social Psychology Bulletin, 34(7), 913–923. doi:10.1177/0146167208316691.

    Article  Google Scholar 

  • Peschiera, G., Taylor, J. E., & Siegel, J. A. (2010). Response–relapse patterns of building occupant electricity consumption following exposure to personal, contextualized and occupant peer network utilization data. Energy and Buildings, 42(8), 1329–1336. doi:10.1016/j.enbuild.2010.03.001.

    Article  Google Scholar 

  • Renström, S., & Rahe, U. (2013). Pleasurable ways of staying warm—a pathway towards reduced energy consumption. In Proceedings from the IASDR Conference 2013, Consilience and Innovation in Design, Tokyo, (pp. 1783–1794).

  • Rosado, L., Hagy, S., Kalmykova, Y., Morrison, G., & Ostermeyer, Y. (2015). A living lab co-creation environment exemplifying factor 10 improvements in a city district.

  • Saman, W. Y. (2012). Towards zero energy homes down under. Renewable Energy, 49, 211–215. doi:10.1016/j.renene.2012.01.029.

    Article  Google Scholar 

  • Scott, K., Bakker, C., & Quist, J. (2012). Designing change by living change. Design Studies, 33(3), 279–297. doi:10.1016/j.destud.2011.08.002.

    Article  Google Scholar 

  • Shove, E., & Walker, G. (2014). What is energy for? Social practice and energy demand. Theory, Culture & Society, 31(5), 41–58. doi:10.1177/0263276414536746.

    Article  Google Scholar 

  • Shove, E., Pantzar, M., & Watson, M. (2012). The dynamics of social practice: everyday life and how it changes. London: SAGE Publications Ltd..

    Book  Google Scholar 

  • Shove, E., Watson, M., & Spurling, N. (2015). Conceptualizing connections: energy demand, infrastructures and social practices. European Journal of Social Theory, 18(3), 274–287. doi:10.1177/1368431015579964.

    Article  Google Scholar 

  • Sorrell, S., Dimitropoulos, J., & Sommerville, M. (2009). Empirical estimates of the direct rebound effect: a review. Energy Policy, 37(4), 1356–1371. doi:10.1016/j.enpol.2008.11.026.

    Article  Google Scholar 

  • Steg, L. (2008). Promoting household energy conservation. Energy Policy, 36(12), 4449–4453. doi:10.1016/j.enpol.2008.09.027.

    Article  Google Scholar 

  • Stephenson, J., Barton, B., Carrington, G., Doering, A., Ford, R., Hopkins, D., et al. (2015). The energy cultures framework: exploring the role of norms, practices and material culture in shaping energy behaviour in New Zealand. Energy Research & Social Science, 7, 117–123. doi:10.1016/j.erss.2015.03.005.

    Article  Google Scholar 

  • Ueno, T., Tsuji, K., & Nakano, Y. (2006). Effectiveness of displaying energy consumption data in residential buildings: to know is to change. In ACEEE Summer Study on Energy Efficiency in Buildings, Washington, D.C., (pp. 264–277).

  • van Dam, S. S., Bakker, C. A., & van Hal, J. D. M. (2010). Home energy monitors: impact over the medium-term. Building Research & Information, 38(5), 458–469. doi:10.1080/09613218.2010.494832.

    Article  Google Scholar 

  • Vassileva, I., Odlare, M., Wallin, F., & Dahlquist, E. (2012). The impact of consumers’ feedback preferences on domestic electricity consumption. Applied Energy, 93, 575–582. doi:10.1016/j.apenergy.2011.12.067.

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by the CRC for Low Carbon Living Ltd. supported by the Cooperative Research Centres program, an Australian Government initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Eon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eon, C., Morrison, G.M. & Byrne, J. The influence of design and everyday practices on individual heating and cooling behaviour in residential homes. Energy Efficiency 11, 273–293 (2018). https://doi.org/10.1007/s12053-017-9563-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-017-9563-y

Keywords

Navigation