Skip to main content

Advertisement

Log in

Hot-cool box calorimetric determination of the solar heat gain coefficient and the U-value of internal shading devices

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

In several developing countries, energy performance rating programs are currently in progress. Complex fenestration systems (CFS) are building components that play a key role in reducing energy consumption. The development and testing of equipment is central for beginning the energy efficiency rating process of complex glazing systems in these countries. This paper validates the use of a low-cost hot-cold box calorimeter for measurement of the solar heat gain coefficient (SGHC) and overall heat transfer coefficient (U-value) of interior shading systems. This work aims to determine the energy performance of three types of often employed shading systems: solar control films, interior horizontal venetian blinds, and indoor drapery curtains. Results show that the energy performance of solar shading devices studied depends on both their morphological and optical properties. The shading systems analyzed present similar U-values, where technological features are represented by the thickness and the thermal conductivity of the material. SHGC is mainly defined by the transmittance and, to a lesser extent, the absorptance of the systems, which differ significantly according to the analyzed shading device. The three types of curtains analyzed demonstrate an SHGC dependent on the fabrics openness factor: jacquard curtains (openness factor 0.05) present a SHGC of 0.7, whereas organza curtains (openness factor 0.45) have a SHGC of 0.82. The SHGC of the venetian blinds analyzed varies on average 36% according to the slat tilt (0°–45°). The solar control films examined modify their solar gain according to their spectral selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. For complex glazing systems, N i must be determined calorimetrically for a given system geometry and set of emittances but will be the same for all such systems regardless of the solar-optical properties of the layers. Therefore, it only needs to be determined once for a “thermally prototypic” system and can be combined with quantities of transmittance and absorptance determined by noncalorimetric optical techniques to produce values of SHGC for a variety of similar systems (Klems et al. 1996). In another study, Klems presents the results of an extensive set of calorimetric measurements of layer-specific inward-flowing fractions for common thermally prototypic systems involving shading (Klems and Kelley 1996). Collins and Harrison (1999) found that for venetian blinds the inward-flowing fraction is dependent on the interior/exterior temperature difference and only slightly dependent on the absorbed irradiance and exterior air film coefficient. They also checked that blind slat angle has an effect on the inward-flowing fraction under certain circumstances.

References

  • Álvarez, G., Palacios, M. J., & Palacios, J. J. (2000). A test method to evaluate the thermal performance of window glazing. Applied Thermal Engineering, 20, 803–812.

    Article  Google Scholar 

  • ASHRAE. (2009). ASHRAE handbook—fundamentals (SI edition). American Society of Heating, Refrigerating and Air-Conditioning Engineers.

  • Chaiyapinunt, S., & Khamporn, N. (2014). Heat transmission through a glass window with a curved venetian blind installed. Solar Energy, 110, 71–82.

    Article  Google Scholar 

  • Chaiyapinunt, S., Phueakpongsuriya, B., Mongkornsaksit, K., & Khomporn, N. (2005). Performance rating of glass windows and glass windows with films in aspect of thermal comfort and heat transmission. Energy and Building, 37, 725–738.

    Article  Google Scholar 

  • Chen, F., & Wittkopf, S. K. (2012). Summer condition thermal transmittance measurement of fenestration systems using calorimetric hot box. Energy and Buildings, 53, 47–56.

    Article  Google Scholar 

  • Collins, M. R. (2004a). Convective heat transfer coefficients from an internal window surface and adjacent sunlit venetian blind. Energy and Buildings, 36(3), 309–318.

    Article  Google Scholar 

  • Collins, M.R. (2004b). The importance of indoorand outdoor air-film coefficient measurement to solar calorimetery. SESCI 2004 Conference, University of Waterloo Waterloo, Ontario, Canada, August 21st–25th.

  • Collins, M. R., & Harrison, S. J. (1999). Calorimetric measurement of the inward-flowing fraction of absorbed solar radiation in venetian blinds. ASHRAE Transactions, 1999(105), 1022–1030.

    Google Scholar 

  • Collins, M. R., & Wright, J. L. (2006). Calculating centre-glass performance indices of windows with a diathermanous layer. ASHRAE Transactions, 112, 22–29.

    Google Scholar 

  • Collins, M. R., Harrison, S. J., Oosthuizen, P. H., & Naylor, D. (2002). Heat transfer from an isothermal vertical surface with adjacent heated horizontal louvers: numerical analysis. ASME Journal of Heat Transfer, 124, 1072–1077.

    Article  Google Scholar 

  • Dino Conte. (2014). Data sheet: veneciana 17mm. Available at: http://www.dinoconte.com.ar/. Accessed 2 Apr 2015.

  • Curcija, D. C. (2016). Fenestration attachments. 2016 Building Technologies Office Peer Review. U.S. Energy Department. Lawrence Berkeley National Laboratory (LBNL).

  • Davidson, M. W. (2017). Tungsten-halogen incandescent lamps. National High Magnetic Field Laboratory, Tallahassee, Florida: The Florida State University. http://zeiss-campus.magnet.fsu.edu/articles/lightsources/tungstenhalogen.html.

  • Dubois, M. C. (1997). Solar shading and building energy use, a literature review, Part 1. Report TABK--97/3049. Department of Building Science, Lund Institute of Technology, Lund University.

  • Foroushani, S.S.M., Wright, J.L., Naylor, D. (2016). Sensitivity of the solar heat gain coefficient of complex fenestration systems to the indoor convection coefficient. Hamilton, Ontario, Canada: eSim 2016 Building Performance Simulation Conference, pp. 277–285.

  • de Gastines, M., Correa, E., & Pattini, A. (2015). Evaluación del balance energético de ventanas en mendoza. Impacto de su tecnología y orientación. Avances en Energías Renovables y Medio Ambiente, 19, 05.01–05.12.

    Google Scholar 

  • Grasso, M. M., Hunn, B. D., & Briones, R. (1990). Effect of textile characteristics on the thermal transmittance of interior shading fabrics. ASHRAE Transactions, 96(1), 875–883.

    Google Scholar 

  • Harrison, S. J., & Collins, M. R. (1999). Queen’s University solar calorimeter—design, calibration, and operating procedure. Edmonton, Canada: Solar Energy Society of Canada Conference.

    Google Scholar 

  • Huizenga, C., Arasteh, D., Curcija, C., Klems, J., Kohler, C., Mitchell, R., Yu, T., Zhu, L., Czarnecki, S., Vidanovic, S., & Zelenay, K. (2013). WINDOW 6.3 shade material library. Lawrence: Berkeley National Laboratory.

    Google Scholar 

  • Hutchins, M. (2015). High performance dynamic shading solutions for energy efficiency and comfort in buildings. Sonnergy report 15/498. Sonnergy Limited.

  • Inoue, T., & Momota, M. (2006). Simplified on-site method for evaluating solar shading performance of advanced windows. Geneva, Switzerland: 23rd Conference on Passive and Low Energy Architecture.

    Google Scholar 

  • International Energy Agency (IEA). (2013). Technology roadmap energy efficient building envelopes. Paris, France. https://www.iea.org/publications/freepublications/publication/TechnologyRoadmapEnergyEfficientBuildingEnvelopes.pdf. Accessed 2 Apr 2015.

  • IRAM 11507. Carpintería de obra. Ventanas y puertas exteriores. Requisitos. parte 6- Etiquetado energético de ventanas.

  • ISO 15099: 2003. (2003). Thermal performance of windows. Doors and shading devices. Berlin: Detailed calculations: BeuthVerlag.

    Google Scholar 

  • Jonsson, J.C., Lee, E.S., Rubin, M. (2008). Light scattering properties of woven shade-screen material used for daylighting and solar heat-gain control. Optics + Photonics, 7065: 70650R-70650R-11. International Society for Optics and Photonics.

  • Keyes, M. W. (1967). Analysis and rating of drapery materials used for indoor shading. ASHRAE Transactions, 73(1), 8.4.1.

    Google Scholar 

  • Klems, J. H., & Kelley, G. O. (1996). Calorimetric measurements of inward-flowing fraction for complex glazing and shading systems. Atlanta, GA: ASHRAE Winter Meeting.

    Google Scholar 

  • Klems, J., Selkowitz, S., & Horowitz, S. A. (1982). Mobile facility for measuring net energy performance of windows and skylights. Dublin, Ireland: Third International Symposium on Energy Conservation in the Built Environment.

    Google Scholar 

  • Klems, J. H., Warner, J. L., & Kelley, G. O. (1996). Calculated and measured SHGC for complex fenestration systems. Atlanta, GA: ASHRAE Winter Meeting.

    Google Scholar 

  • Kotey, N. A., Wright, J. L., Barnaby, S. C., & Collins, M. R. (2009). Solar gain through windows with shading devices: simulation versus measurement. ASHRAE Transactions, 115, 18–30.

    Google Scholar 

  • Kuhn, T. E. (2014). Calorimetric determination of the solar heat gain coefficient g with steady-state laboratory measurements. Energy and Buildings, 84, 388–402.

    Article  Google Scholar 

  • Laouadi, A. (2009). Thermal modeling of shading devices of windows. ASHRAE Transactions, 115(2), 1–20.

    Google Scholar 

  • Laouadi, A. (2011). Construction technology updates no. 77: performance of solar shading devices. National Research Council of Canada.

  • Lau, A. K. K., Salleh, E., Lim, C., & Sulaiman, M. (2016). Potential of shading devices and glazing configurations on cooling energy savings for high-rise office buildings in hot-humid climates: the case of Malaysia. International Journal of Sustainable Built Environment, 5, 387–399.

    Article  Google Scholar 

  • Lawrence Berkeley National Laboratory (LBNL). (2011).THERM 6.3 / WINDOW 6.3 NFRC simulation manual.

  • Lawrence Berkeley National Laboratory (LBNL). (2009). Calculating fenestration product performance in WINDOW6 and THERM6 according to EN 673 and ISO 10077.

  • Lawrence Berkeley National Laboratory (LBNL). (2013). OPTICS 6.0. https://windows.lbl.gov/software/optics/optics.html Accessed 17 Jan 2017.

  • Lawrence Berkeley National Laboratory (LBNL). (2008). WINDOW 6.2 / THERM 6.2. Research Version User Manual. Windows & Daylighting Group, Building Technologies Program, Environmental Energy Technologies Department.

  • Lomanowski, B.A. (2008). Implementation of window shading models into dynamic whole-building simulation. Thesis. Master of Applied Science in Mechanical Engineering University of Waterloo.

  • Lunde, H. A., & Lindley, J. A. (1988). Effects of window treatments in cold climates. Home Economics Research Journal, 16(3), 223–235.

    Article  Google Scholar 

  • Marinoski, D. L., Güths, S., & Lamberts, R. (2012). Development of a calorimeter for determination of the solar factor of architectural glass and fenestrations. Building and Environment, 47, 232–242.

    Article  Google Scholar 

  • Milbratz, J. H. (2007). Análise de propriedades térmicas e ópticas de janelas através de simulação computacional. Thesis. Departamento de Engenharia Civil, Centro Tecnológico, Universidade Federal de Santa Catarina.

  • Monroy, M. M. (1995). Comportamiento térmico de cerramientos soleados. Un modelo de simulación por diferencias finitas. Doctoral Thesis, Departamento de Construcción Arquitectónica, Universidad de Las Palmas de Gran Canaria.

  • National Program for the Rational and Efficient Energy Use. (PRONUREE) Commercial and public sector, 2015. http://www.energia.gov.ar/contenidos/verpagina.php?idpagina=2901. Accessed 27 Apr 2015.

  • Natural Resources Canada. (2017). National Solar Test Facility. Exova Canada Inc., Mississauga (Ontario). http://www.nrcan.gc.ca/energy/renewable-electricity/solar-thermal/7335. Accessed 17 Jan 2017.

  • NFRC 200. (2010). Procedure for determining fenestration product solar heat gain coefficient and visible transmittance at normal incidence. USA: National Fenestration Rating Council.

    Google Scholar 

  • Ng, P.K. (2014). Semi-transparent building-integrated photovoltaic (BIPV) windows for the tropics. Doctoral thesis, Department of Architecture, National University of Singapore.

  • Philips. (2016). Technical sheet (Philips Halogen linear lamp 8727900881264 1000 W R7s cap 220–240 V Warm White). http://www.p4c.philips.com/cgi-bin/cpindex.pl?scy=AR&slg=EN&ctn=8727900881264 Accessed 18 Feb 2017.

  • 3M Rodin. (2014). Data sheet: 1M solar control films.

  • Selkowitz, S. (2011). The future of building energy efficiency. Progress via global collaboration. Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory.

  • Shahid, H., & Naylor, D. (2005). Energy performance assessment of a window with a horizontal venetian blind. Ener. Build., 37, 836–843.

    Article  Google Scholar 

  • Sharda, A., & Kumar, S. (2014). Heat transfer through glazing systems with inter-pane shading devices: a review. Energy Technology & Policy: An Open Access Journal, 1(1), 23–34.

    Article  Google Scholar 

  • Sharda, A., & Kumar, S. (2016). Experimental investigation of U value of double-glazed window with inter-pane blinds using Taguchi techniques. Energy Efficiency, 9, 1145.

    Article  Google Scholar 

  • Simmler, H., & Binder, B. (2008). Experimental and numerical determination of the total solar energy transmittance of glazing with venetian blind shading. Building and Environment, 43, 197–204.

    Article  Google Scholar 

  • Textil Network Argentina. (2015).Available at: http://www.redtextilargentina.com.ar/ Accessed 2 Apr 2015.

  • Tzempelikos, A. (2008). A review of optical properties of shading devices. Advances in Building Energy Research, 2(1), 211–239.

    Article  Google Scholar 

  • Villalba, A., Pattini, A., Córica, L. (2012). Análisis de las características morfológicas de las envolventes edilicias y del entorno urbano desde la perspectiva de la iluminación natural. Ambiente Construído, 12 (4), 159–175.

  • Wall, M., & Bülow-Hübe, H. (2003). Report no EBD-R--03/1 Solar protection in buildings. Part 2, 2000–2002. Department of Construction and Architecture. Lund: Lund University.

    Google Scholar 

  • Wright, J. L. (2008). Calculating centre-glass performance indices of glazing systems with shading devices. ASHRAE Transactions1, 14(2), 199–209.

    Google Scholar 

  • Yahoda, D. S., & Wright, J. L. (2004). Heat transfer analysis of a between-panes venetian blind using effective long wave radiation properties. ASHRAE Transactions, 110(1), 455–462.

    Google Scholar 

  • Ye, P., Harrison, S. J., Oosthuizen, P. H., & Naylor, D. (1999). Convective heat transfer from a window with a venetian blind: detailed modeling. ASHRAE Transactions, 105, 1031–1037.

    Google Scholar 

Download references

Acknowledgements

This work was funded by the project PICTO ENARGAS 2009-0133: Desarrollo y Estudio de Comportamiento Energético de Precisión de Carpinterías Exteriores y Elementos de Control Solar de Bajo Costo; PICT FONCYT-AGENCIA N° 2089; Iluminación natural en el hábitat de clima soleado; FONCYT, Agencia Nacional de Promoción Científica y Tecnológica, Argentina; and ENARGAS (Ente Nacional Regulador del Gas).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayelén Villalba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

Description of solar control systems selected

Horizontal interior venetian blind

The most frequently used types of blinds in the study area are the interior horizontal aluminum venetian blinds and 17-mm-wide slats, and these bands rotate on its horizontal axis regulating light passing between them (Dino Conte 2014).

Geometric properties of the slats were determined using measuring instruments. The obtained dimensions are shown in Fig. 9: the radius of curvature R, the strap thickness, strap width, and amplitude of the curvature of the strap (Fig. 9). Table 9 shows the optical properties of materials that make up venetian blinds. The distance between the slat center of the venetian blind is 13 mm.

Fig. 9
figure 9

Geometric properties of venetian blind slat

Table 9 Optical properties of surface materials that make up venetian blinds (Huizenga et al. 2013; Laouadi 2011)

Solar control films

Solar control films selected for this study are as follows:

  • p18ar: highly reflective mirror polyester film, 50 μm thick, abrasion resistant (3M Rodin 2014)

  • fxst20: medium smoke tinted polyester film, 50 μm thick, abrasion resistant (3M Rodin 2014)

  • fxst35: clear smoke tinted polyester film, 50 μm thick, abrasion resistant (3M Rodin 2014)

Interior drapery curtain

The interior textile curtains analyzed in this study are (a) organza (openness factor 0.45), (b) jacquard (openness factor 0.05), and (c) polyester gabardine (openness factor 0.05) (Fig. 10, Table 10). All three selected textiles fall into the category of plain weave (Fig. 11) and belong to the category of light colors (Keyes 1967).

Fig. 10
figure 10

Samples of analyzing textile: a organza, b jacquard, c polyester gabardine

Table 10 Properties of the selected textiles (Textil Network Argentina 2015)
Fig. 11
figure 11

Plain weave

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villalba, A., Correa, E., Pattini, A. et al. Hot-cool box calorimetric determination of the solar heat gain coefficient and the U-value of internal shading devices. Energy Efficiency 10, 1553–1571 (2017). https://doi.org/10.1007/s12053-017-9544-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-017-9544-1

Keywords

Navigation