Skip to main content
Log in

A mathematical model for in vitro coagulation of blood: role of platelet count and inhibition

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

A mechanistic model including the role of platelets is proposed for clot formation and growth in plasma in vitro. Initiation of clot formation is by the addition of tissue factor, and initiation via the intrinsic pathway is neglected. Activation of zymogens follows the extrinsic pathway cascade and reactions on platelet membranes are included. Platelet activation occurs due to thrombin and also due to other activated platelets. Inhibition of the active clotting factors is by ATIII and TFPI, whereas inhibition due to APC is not relevant in the conditions modeled. The model predictions matched existing data for thrombin production in synthetic plasma. The model predicts that inhibition of platelet-driven activation of platelets has a major effect on concentration of activated platelets in PRP, normal plasma and PPP. Inhibition of platelet activation by (other activated) platelets significantly delays thrombin production in PRP and normal plasma as compared to that by thrombin. Further, sensitivity analysis shows that the model is most sensitive to the activation of platelet membrane-bound factor X by the intrinsic tenase complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Luan D, Zai M and Varner J D 2007 Computationally derived points of fragility of a human cascade are consistent with current therapeutic strategies. PLoS Comput. Biol. 3(7): e142

    Article  Google Scholar 

  2. Panteleev M A, Sveshnikova A N, Belyaev A V, Nechipurenko D Y, Gudich I, Obydenny S I, Dovlatova N, Fox S C and Holmuhamedov E L 2014 Systems biology and systems pharmacology of thrombosis. Math. Model. Nat. Phenom. 9(6): 4–16

    Article  MathSciNet  MATH  Google Scholar 

  3. Mann K G 2012 Is there value in kinetic modeling of thrombin generation? yes. J. Thromb. Haemost. 10(8): 1463–1469

    Article  Google Scholar 

  4. Bates S M and Weitz J I 2005 Coagulation assays. Circulation 112(4): e53–e60

    Article  Google Scholar 

  5. Walenga J M and Hoppensteadt D A 2004 Monitoring the new antithrombotic drugs. In: Seminars in thrombosis and hemostasis, vol. 30, pp. 683–695. Thieme Medical, New York, USA

  6. Ataullakhanov F I and Panteleev M A 2005 Mathematical modeling and computer simulation in blood coagulation. Pathophys. Haemost. Thromb. 34(2–3): 60–70

    Google Scholar 

  7. Monroe D M, Hoffman M and Roberts H R 2002 Platelets and thrombin generation. Arterioscler. Thromb. Vasc. Biol. 22: 1381–1389

    Article  Google Scholar 

  8. Kuharsky A L and Fogelson A L 2001 Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition. Biophys. J. 80(3): 1050–1074

    Article  Google Scholar 

  9. Fogelson A L, Hussain Y H and Leiderman K 2012 Blood clot formation under flow: the importance of factor xi depends strongly on platelet count. Biophys. J. 102(1): 10–18

    Article  Google Scholar 

  10. Hockin M F, Jones K C, Everse S J and Mann K G 2002 A model for the stoichiometric regulation of blood coagulation. J. Biol. Chem. 277(21): 18322–18333

    Article  Google Scholar 

  11. Anand M, Rajagopal K and Rajagopal K R 2008 A model for the formation, growth, and lysis of clots in quiescent plasma: a comparison between the effects of antithrombin iii deficiency and protein c deficiency. J. Theor. Biol. 253(4): 725–738

    Article  Google Scholar 

  12. Furie B and Furie B C 2008 Mechanisms of thrombus formation. N. Eng. J. Med. 359(9): 938–949

    Article  Google Scholar 

  13. Monroe D M and Hoffman M 2006 What does it take to make the perfect clot? Arterioscler. Thromb. Vasc. Biol. 26(1): 41–48

    Article  Google Scholar 

  14. Jesty J 2001 Blood coagulation. Wiley, New York

    Book  MATH  Google Scholar 

  15. Tracy P B, Eide L L, Bowie E J, Mann K G and Tracy B 1982 Radioimmunoassay of factor V in human plasma and platelets. Blood 60: 59–63

    Google Scholar 

  16. Lipscomb M S and Walsh P N 1979 Human platelets and factor xi: localization in platelet membranes of factor xi-like activity and its functional distinction from plasma factor xi. J. Clin. Invest. 63(5): 1006

    Article  Google Scholar 

  17. Wood J P, Silveira J R, Maille N M, Haynes L M and Tracy P B 2011 Prothrombin activation on the activated platelet surface optimizes expression of procoagulant activity. Blood 117(5): 1710–1718

    Article  Google Scholar 

  18. van’t Veer C and Mann K G 1997 Regulation of tissue factor initiated thrombin generation by the stoichiometric inhibitors tissue factor pathway inhibitor, antithrombin-iii, and heparin cofactor-ii. J. Biol. Chem. 272(7): 4367–4377

    Article  Google Scholar 

  19. Panteleev M A, Zarnitsina V I and Ataullakhanov F I 2002 Tissue factor pathway inhibitor. Eur. J. Biochem. 269(8): 2016–2031

    Article  Google Scholar 

  20. Butenas S and Mann K G 2002 Blood coagulation. Biochemistry (Moscow) 67(1): 3–12

    Article  Google Scholar 

  21. Hoffman R, Benz E J, Silberstein L E, Heslop H, Weitz J and Anastasi J 2012 Hematology: basic principles and practice, expert consult premium edition–Enhanced online features. Elsevier, Amsterdam

    Google Scholar 

  22. Diamond S L 2013 Systems biology of coagulation. J. Thromb. Haemost. 11(s1): 224–232

    Article  Google Scholar 

  23. Chatterjee M S, Denney W S, Jing H and Diamond S L 2010 Systems biology of coagulation initiation: kinetics of thrombin generation in resting and activated human blood. PLoS Comput. Biol. 6(9): e1000950

    Article  Google Scholar 

  24. Jones K C and Mann K G 1994 A model for the tissue factor pathway to thrombin. J. Biol. Chem. 269(37): 23367–23373

    Google Scholar 

  25. Mann K G, Butenas S and Brummel K 2003 The dynamics of thrombin formation. Arterioscler. Thromb. Vasc. Biol. 23(1): 17–25

    Article  Google Scholar 

  26. Lourens Marcel A J 2007 A mathematical model for platelet adhesion and activation. Master thesis

  27. Tokarev A, Sirakov I, Panasenko G, Volpert V, Shnol E, Butylin A and Ataullakhanov F 2012 Continuous mathematical model of platelet thrombus formation in blood flow. Russian J. Numer. Anal. Math. Model. 27(2): 191–212

    Article  MathSciNet  MATH  Google Scholar 

  28. Ataullakhanov F I, Krasotkina Yu V, Sarbash V I, Volkova R I, Sinauridse E I and Kondratovich A Yu 2002 Spatio-temporal dynamics of blood coagulation and pattern formation: an experimental study. Int. J. Bifurc. Chaos 12(09): 1969–1983

    Article  Google Scholar 

  29. Ataullakhanov F I, Zarnitsina V I, Pokhilko A V, Lobanov A I and Morozova O L 2002 Spatio-temporal dynamics of blood coagulation and pattern formation: a theoretical approach. Int. J. Bifurc. Chaos 12(09): 1985–2002

    Article  MathSciNet  MATH  Google Scholar 

  30. Moiseyev G, Givli S and Bar-Yoseph P Z 2013 Fibrin polymerization in blood coagulationa statistical model. J. Biomech. 46(1): 26–30

    Article  Google Scholar 

  31. Orfeo T, Butenas S, Brummel-Ziedins K E and Mann K G 2005 The tissue factor requirement in blood coagulation. J. Biol. Chem. 280(52): 42887–42896

    Article  Google Scholar 

  32. Balandina A N, Shibeko A M, Kireev D A, Novikova A A, Shmirev I I, Panteleev M A and Ataullakhanov F I 2011 Positive feedback loops for factor v and factor vii activation supply sensitivity to local surface tissue factor density during blood coagulation. Biophys. J. 101(8): 1816–1824

    Article  Google Scholar 

  33. Beard Daniel A 2012 Biosimulation: simulation of living systems. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  34. Rand M D, Lock J B, Van’t Veer C, Gaffney D P and Mann K G 1996 Blood clotting in minimally altered whole blood. Blood 88(9): 3432–3445

    Google Scholar 

  35. Lawson J H, Butenas S and Ribarik N 1993 Complex-dependent inhibition of factor VIIa by antithrombin III and Heparin. J. Biol. Chem. 268(2): 767–770

    Google Scholar 

  36. Mann K G, Nesheim M E, Church W R, Haley P and Krishnaswamy S 1990 Surface-dependent reactions of the vitamin k-dependent enzyme complexes. Blood 76(1): 1–16

    Google Scholar 

  37. Wiebe E M, Stafford A R, James C, Weitz J I and Fredenburgh J C 2003 Enzyme catalysis and regulation: mechanism of catalysis of inhibition of factor IXa by antithrombin in the presence of heparin or pentasaccharide mechanism of catalysis of inhibition of factor IXa by antithrombin in the presence of heparin or pentasaccharide. J. Biol. Chem. 278(37): 35767–35774

    Article  Google Scholar 

  38. Krishnaswamy S, Jones K C and Mann K G 1988 Prothrombinase complex assembly. kinetic mechanism of enzyme assembly on phospholipid vesicles. J. Biol. Chem. 263(8): 3823–3834

    Google Scholar 

  39. Raut S, Weller L and Barrowcliffe T W 1999 Phospholipid binding of factor viii in different therapeutic concentrates. Br. J. Haematol. 107(2): 323–329

    Article  Google Scholar 

  40. Anand M, Rajagopal K and Rajagopal K R 2003 A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood. J. Theor. Med. 5(3–4): 183–218

    Article  MathSciNet  MATH  Google Scholar 

  41. Ahmad S S, Rawala-Sheikh R and Walsh P N 1989 Comparative interactions of factor ix and factor ixa with human platelets. J. Biol. Chem. 264(6): 3244–3251

    Google Scholar 

  42. Ahmad S S, Scandura J M and Walsh P N 2000 Structural and functional characterization of platelet receptor-mediated factor viii binding. J. Biol. Chem. 275(17): 13071–13081

    Article  Google Scholar 

  43. Butenas S, van’t Veer C and Mann K G 1999 Normal thrombin generation. Blood 94(7): 2169-2178

    Google Scholar 

  44. Marx R E 2001 Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent. 10(4): 225–228

  45. Sultan A 2010 Five-minute preparation of platelet-poor plasma for routine coagulation testing. East. Mediterr. Health J. 16(2): 233–236

    Google Scholar 

  46. Danforth C M, Orfeo T, Mann K G, Brummel-Ziedins K E and Everse S J 2009 The impact of uncertainty in a blood coagulation model. Math. Med. Biol. 26(4): 323–336

    Article  MathSciNet  MATH  Google Scholar 

  47. Naidu P P and Anand M 2014 Importance of viiia inactivation in a mathematical model for the formation, growth, and lysis of clots. Math. Model. Nat. Phenom. 9(06): 17–33

    Article  MathSciNet  MATH  Google Scholar 

  48. Hemker H C and Ataullakhanov F I 2005 Good mathematical practice: simulation of the hemostatic–thrombotic mechanism, a powerful tool but one that must be used with circumspection. Pathophys. Haemost. Thromb. 34(2–3): 55–57

    Google Scholar 

  49. Butenas S, Cawthern K M, van’t Veer C, DiLorenzo M E, Lock J B and Mann K G 2001 Antiplatelet agents in tissue factor-induced blood coagulation. Blood 97(8): 2314–2322

    Article  Google Scholar 

  50. Sequeira A and Bodnár T 2014 Blood coagulation simulations using a viscoelastic model. Math. Model. Nat. Phenom. 9(6): 34–45

    Article  MathSciNet  MATH  Google Scholar 

  51. Butenas S and Mann K G 1996 Kinetics of human factor VII activation. Biochemistry 35(6): 1904–1910

    Article  Google Scholar 

  52. Butenas S, Orfeo T and Mann K G 2009 Tissue factor in coagulation which? where? when? Arterioscler. Thromb. Vasc. Biol. 29(12): 1989–1996

    Article  Google Scholar 

  53. Bauer K A, Kass B L, ten Cate H, Hawiger J J and Rosenberg R D 1990 Factor ix is activated in vivo by the tissue factor mechanism. Blood 76(4): 731–736

    Google Scholar 

  54. Pieters J, Willems G, Hemker H C and Lindhout T 1988 Inhibition of factor LXa and factor X, by antithrombin III/heparin during factor X activation. J. Biol. Chemi. 263(30): 15313–15318

    Google Scholar 

  55. Krishnaswamy S, Williams E B and Mann K G 1986 The binding of activated protein C to factors V and Va. J. Biol. Chem. 261(21): 9684–9693

    Google Scholar 

  56. van’t Veer C, Hackeng T M, Delahaye C, Sixma J J and Bouma B N 1994 Activated factor X and thrombin formation triggered by tissue factor on endothelial cell matrix in a flow model: effect of the tissue factor pathway inhibitor. Blood 84: 1132–1142

    Google Scholar 

  57. Heemskerk J W M, Bevers E M and Lindhout T 2002 Platelet activation and blood coagulation. Thromb. Haemost. Stuttgart. 88(2): 186–194

    Google Scholar 

  58. Neuenschwander P F and Jesty J 1988 A comparison of phospholipid and platelets in the activation of human factor VIII by thrombin and factor Xa, and in the activation of factor X. Blood 72(5): 1761–1770

    Google Scholar 

  59. Fay P J 2004 Activation of factor viii and mechanisms of cofactor action. Blood Rev. 18(1): 1–15

    Article  MathSciNet  Google Scholar 

  60. Neuenschwander P F and Jesty J 1992 Thrombin-activated and factor xa-activated human factor viii: differences in cofactor activity and decay rate. Arch. Biochem. Biophys. 296(2): 426–434

    Article  Google Scholar 

  61. Monkovic D D and Tracy P B 1990 Activation of human factor V by factor Xa and thrombin. Biochemistry 29(5): 1118–1128

    Article  Google Scholar 

  62. Mann K G 2003 Thrombin formation. CHEST J. 124(3 Suppl): 4S–10S

    Article  Google Scholar 

Download references

Acknowledgements

MS was supported by the MHRD Fellowship for Research Scholars administered by IIT Hyderabad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Anand.

Appendices

Appendix 1: Model reactions

$$\begin{aligned} G_\mathrm{TF}=&-k^{+}_{T7}[\mathrm{TF}][\mathrm{VII}]+k^{-}_{T7}[\mathrm{TF:VII}] \nonumber \\&-\, k^{+}_{T7a}[\mathrm{TF}][\mathrm{VIIa}]+k^{-}_{T7a}[\mathrm{TF:VIIa}]. \end{aligned}$$
(1)
$$\begin{aligned} G_\mathrm{VII}=&-k^{+}_{T7}[\mathrm{TF}][\mathrm{VII}]+k^{-}_{T7}[\mathrm{TF:VII}]-k_{TF7}[\mathrm{TF:VIIa}][\mathrm{VII}] \nonumber \\&-\, k_{10,7}[\mathrm{Xa}][\mathrm{VII}]-k_{2,7}[\mathrm{IIa}][\mathrm{VII}]. \end{aligned}$$
(2)
$$\begin{aligned} G_\mathrm{TF:VII}=&k^{+}_{T7}[\mathrm{TF}][\mathrm{VII}]-k^{-}_{T7}[\mathrm{VII}^{m}]. \end{aligned}$$
(3)
$$\begin{aligned} G_\mathrm{VIIa}=\,&-k^{+}_{T7a}[\mathrm{TF}][\mathrm{VIIa}]+k^{-}_{T7a}[\mathrm{TF:VIIa}]+k_{TF7}[\mathrm{TF:VIIa}][\mathrm{VII}] \nonumber \\&+\,k_{10,7}[\mathrm{Xa}][\mathrm{VII}]+k_{2,7}[\mathrm{IIa}][\mathrm{VII}]. \end{aligned}$$
(4)
$$\begin{aligned} G_\mathrm{TF:VIIa}=&k^{+}_{T7a}[\mathrm{TF}][\mathrm{VIIa}]-k^{-}_{T7a}[\mathrm{TF:VIIa}]-h^{TP}_{7}[\mathrm{TFPI:Xa}][\mathrm{TF:VIIa}]\nonumber \\&-\,h^{AT}_{7}[\mathrm{ATIII}][\mathrm{TF:VIIa}]. \end{aligned}$$
(5)
$$\begin{aligned} G_\mathrm{IX}=&-\dfrac{k_{9}[\mathrm{TF:VIIa}][\mathrm{IX}]}{K_{9M}+[\mathrm{IX}]}-k^{+}_{9}N_{9}[\mathrm{AP}][\mathrm{IX}]+k^{-}_{9}[\mathrm{IX}^{m}].\end{aligned}$$
(6)
$$\begin{aligned} G_\mathrm{IXa}=&\dfrac{k_{9}[\mathrm{TF:VIIa}][\mathrm{IX}]}{K_{9M}+[\mathrm{IX}]}-k^{+}_{9}N_{9}[\mathrm{AP}][\mathrm{IXa}]\nonumber \\&+k^{-}_{9}[\mathrm{IXa}^{m}] -h_{9}[\mathrm{IXa}][\mathrm{ATIII}]. \end{aligned}$$
(7)
$$\begin{aligned} G_\mathrm{IX^{m}}=&k^{+}_{9}N_{9}[\mathrm{AP}][\mathrm{IX}]-k^{-}_{9}[\mathrm{IX}^{m}]. \end{aligned}$$
(8)
$$\begin{aligned} G_\mathrm{IXa^{m}}=&-k^{+}_{TEN}[\mathrm{VIIIa}^{m}][\mathrm{IXa}^{m}]+k^{-}_{TEN}[\mathrm{VIIIa}^{m}:\mathrm{IXa}^{m}] \nonumber \\&+k^{+}_{9}N_{9}[\mathrm{AP}][\mathrm{IXa}]-k^{-}_{9}[\mathrm{IXa}^{m}]. \end{aligned}$$
(9)
$$\begin{aligned} G_\mathrm{X}=&-\dfrac{k_{7,10}[\mathrm{TF:VIIa}][\mathrm{X}]}{K_{7,10M}+[\mathrm{X}]}-k^{+}_{10}N_{10}[\mathrm{AP}][\mathrm{X}]+k^{-}_{10}[\mathrm{X}^{m}]. \end{aligned}$$
(10)
$$\begin{aligned} G_\mathrm{Xa}=&\dfrac{k_{7,10}[\mathrm{TF:VIIa}][\mathrm{X}]}{K_{7,10M}+[\mathrm{X}]}-h^{TP+}_{10}[\mathrm{TFPI}][\mathrm{Xa}]+h^{TP-}_{10}[\mathrm{Xa:TFPI}] \nonumber \\&-\, h^{AT}_{10}[\mathrm{ATIII}][\mathrm{Xa}]-k^{+}_{10}N_{10}[\mathrm{AP}][\mathrm{Xa}]+k^{-}_{10}[\mathrm{Xa^{m}}]. \end{aligned}$$
(11)
$$\begin{aligned} G_{\mathrm{X}^{m}}=&-\dfrac{k_{10}[\mathrm{VIIIa}^{m}:\mathrm{IXa}^{m}][\mathrm{X}^{m}]}{K_{10M}+[\mathrm{X}^{m}]}\nonumber \\&+\,k^{+}_{10}N_{10}[\mathrm{AP}][\mathrm{X}]-k^{-}_{10}[\mathrm{X}^{m}]. \end{aligned}$$
(12)
$$\begin{aligned} G_{\mathrm{Xa}^{m}}=&\dfrac{k_{10}[\mathrm{VIIIa}^{m}:\mathrm{IXa}^{m}][\mathrm{X}^{m}]}{K_{10M}+[\mathrm{X}^{m}]}-k^{+}_\mathrm{PRO}[\mathrm{Va}^{m}][\mathrm{Xa}^{m}] \nonumber \\&+\,k^{-}_\mathrm{PRO}[\mathrm{Va}^{m}:\mathrm{Xa}^{m}]+k^{+}_{10}N_{10}[\mathrm{AP}][\mathrm{Xa}]-k^{-}_{10}[\mathrm{Xa^{m}}]. \end{aligned}$$
(13)
$$\begin{aligned} G_\mathrm{II}=&-k_{2t}[\mathrm{Xa}][\mathrm{II}]-k^{+}_{2}N_{2}[\mathrm{AP}][\mathrm{II}]+k^{-}_{2}[\mathrm{II}^{m}]. \end{aligned}$$
(14)
$$\begin{aligned} G_\mathrm{IIa}=\,&k_{2t}[\mathrm{Xa}][\mathrm{II}]-k^{+}_{2}N_{2}[\mathrm{AP}][\mathrm{IIa}]+k^{-}_{2}[\mathrm{IIa}^{m}]\nonumber \\&-\, h_{2}[\mathrm{ATIII}][\mathrm{IIa}]. \end{aligned}$$
(15)
$$\begin{aligned} G_{\mathrm{II}^{m}}=&-\dfrac{k_{2}[\mathrm{Va}^{m}:\mathrm{Xa}^{m}][\mathrm{II}^{m}]}{K_{2M}+[\mathrm{II}^{m}]}+k^{+}_{2}N_{2}[\mathrm{AP}][\mathrm{II}]-k^{-}_{2}[\mathrm{II}^{m}]. \end{aligned}$$
(16)
$$\begin{aligned} G_{\mathrm{IIa}^{m}}=&\dfrac{k_{2}[\mathrm{Va}^{m}:\mathrm{Xa}^{m}][\mathrm{II}^{m}]}{K_{2M}+[\mathrm{II}^{m}]}+k^{+}_{2}N_{2}[\mathrm{AP}][\mathrm{IIa}]-k^{-}_{2}[\mathrm{IIa}^{m}]. \end{aligned}$$
(17)
$$\begin{aligned} G_\mathrm{PL}=&-kpp[\mathrm{PL}][\mathrm{AP}]-\dfrac{kp2[\mathrm{PL}][\mathrm{IIa}]}{1+[\mathrm{IIa}]}. \end{aligned}$$
(18)
$$\begin{aligned} G_\mathrm{AP}=&kpp[\mathrm{PL}][\mathrm{AP}]+\dfrac{kp2[PL][\mathrm{IIa}]}{1+[\mathrm{IIa}]}. \end{aligned}$$
(19)
$$\begin{aligned} G_\mathrm{VIII}=&-\dfrac{k_{8}[\mathrm{IIa}][\mathrm{VIII}]}{K_{8M}+[\mathrm{VIII}]}-k^{+}_{8}N_{8}[\mathrm{AP}][\mathrm{VIII}]+k^{-}_{8}[\mathrm{VIII}^{m}]. \end{aligned}$$
(20)
$$\begin{aligned} G_\mathrm{VIIIa}=&\dfrac{k_{8}[\mathrm{IIa}][\mathrm{VIII}]}{K_{8M}+[\mathrm{VIII}]}-k^{+}_{8}N_{8}[\mathrm{AP}][\mathrm{VIIIa}]\nonumber \\&+\, k^{-}_{8}[\mathrm{VIIIa}^{m}]-h_{8}[\mathrm{VIIIa}]. \end{aligned}$$
(21)
$$\begin{aligned} G_{\mathrm{VIII}^{m}}=&-\dfrac{k^{m}_{8}[\mathrm{IIa}^{m}][\mathrm{VIII}^{m}]}{K^{m}_{8M}+[\mathrm{VIII}^{m}]}-\dfrac{k^{m}_{8t}[\mathrm{Xa}^{m}][\mathrm{VIII}^{m}]}{K^{m}_{8tM}+[\mathrm{VIII}^{m}]}\nonumber \\&+\, k^{+}_{8}N_{8}[\mathrm{AP}][\mathrm{VIII}]-k^{-}_{8}[\mathrm{VIII}^{m}]. \end{aligned}$$
(22)
$$\begin{aligned} G_{\mathrm{VIIIa}^{m}}=&\dfrac{k^{m}_{8}[\mathrm{IIa}^{m}][\mathrm{VIII}^{m}]}{K^{m}_{8M}+[\mathrm{VIII}^{m}]}+\dfrac{k^{m}_{8t}[\mathrm{Xa}^{m}][\mathrm{VIII}^{m}]}{K^{m}_{8tM}+[\mathrm{VIII}^{m}]}+k^{+}_{8}N_{8}[\mathrm{AP}][\mathrm{VIIIa}]\nonumber \\&-\,k^{-}_{8}[\mathrm{VIIIa}^{m}]-k^{+}_{TEN}[\mathrm{VIIIa}^{m}][\mathrm{IXa}^{m}] \nonumber \\&+\, k^{-}_{TEN}[\mathrm{VIIIa}^{m}:\mathrm{IXa}^{m}]. \end{aligned}$$
(23)
$$\begin{aligned} G_{\mathrm{VIIIa}^{m}:\mathrm{IXa}^{m}}=\,&k^{+}_{TEN}[\mathrm{VIIIa}^{m}][\mathrm{IXa}^{m}]-k^{-}_{TEN}[\mathrm{VIIIa}^{m}:\mathrm{IXa}^{m}]. \end{aligned}$$
(24)
$$\begin{aligned} G_\mathrm{V}=&-\dfrac{k_{5}[\mathrm{IIa}][\mathrm{V}]}{K_{5M}+[\mathrm{V}]}-k^{+}_{5}N_{5}[\mathrm{AP}][\mathrm{V}]+k^{-}_{5}[\mathrm{V}^{m}]. \end{aligned}$$
(25)
$$\begin{aligned} G_\mathrm{Va}=&\dfrac{k_{5}[\mathrm{IIa}][\mathrm{V}]}{K_{5M}+[\mathrm{V}]}-k^{+}_{5}N_{5}[\mathrm{AP}][\mathrm{Va}]+k^{-}_{5}[\mathrm{Va}^{m}]-h_{5}[\mathrm{Va}]. \end{aligned}$$
(26)
$$\begin{aligned} G_{\mathrm{V}^{m}}=&-\dfrac{k^{m}_{5}[\mathrm{IIa}^{m}][\mathrm{V}^{m}]}{K^{m}_{5M}+[\mathrm{V}^{m}]}-\dfrac{k^{m}_{5t}[\mathrm{Xa}^{m}][\mathrm{V}^{m}]}{K^{m}_{5tM}+[\mathrm{V}^{m}]}\nonumber \\&+\, k^{+}_{5}N_{5}[\mathrm{AP}][\mathrm{V}]-k^{-}_{5}[\mathrm{V}^{m}]. \end{aligned}$$
(27)
$$\begin{aligned} G_{\mathrm{Va}^{m}}=&\dfrac{k^{m}_{5}[\mathrm{IIa}^{m}][\mathrm{V}^{m}]}{K^{m}_{5M}+[\mathrm{V}^{m}]}+\dfrac{k^{m}_{5t}[\mathrm{Xa}^{m}][\mathrm{V}^{m}]}{K^{m}_{5tM}+[\mathrm{V}^{m}]}-k^{+}_\mathrm{PRO}[\mathrm{Xa}^{m}][\mathrm{Va}^{m}]\nonumber \\&+\, k^{-}_\mathrm{PRO}[\mathrm{Xa}^{m}:\mathrm{Va}^{m}]+k^{+}_{5}N_{5}[\mathrm{AP}][\mathrm{Va}]-k^{-}_{5}[\mathrm{Va}^{m}]. \end{aligned}$$
(28)
$$\begin{aligned} G_{\mathrm{Xa}^{m}:\mathrm{Va}^{m}}=\,&k^{+}_\mathrm{PRO}[\mathrm{Xa}^{m}][\mathrm{Va}^{m}]-k^{-}_\mathrm{PRO}[\mathrm{Xa}^{m}:\mathrm{Va}^{m}]. \end{aligned}$$
(29)
$$\begin{aligned} G_{I}=&-\dfrac{k_{f}([\mathrm{IIa}])[\mathrm{I}]}{K_{fM}+[\mathrm{I}]}. \end{aligned}$$
(30)
$$\begin{aligned} G_\mathrm{Ia}=&\dfrac{k_{f}([\mathrm{IIa}])[\mathrm{I}]}{K_{fM}+[\mathrm{I}]}. \end{aligned}$$
(31)
$$\begin{aligned} G_\mathrm{TFPI}=&-h^{TP+}_{10}[\mathrm{Xa}][\mathrm{TFPI}]+h^{TP-}_{10}[\mathrm{Xa:TFPI}]. \end{aligned}$$
(32)
$$\begin{aligned} G_\mathrm{Xa:TFPI}=\,&h^{TP+}_{10}[\mathrm{Xa}][\mathrm{TFPI}]-h^{TP-}_{10}[\mathrm{Xa:TFPI}] \nonumber \\&-h^{TP}_{7}[\mathrm{TF:VIIa}][\mathrm{Xa:TFPI}]. \end{aligned}$$
(33)
$$\begin{aligned} G_\mathrm{ATIII}=&-[\mathrm{ATIII}](h^{AT}_{10}[\mathrm{Xa}]+h_{9}[\mathrm{IXa}]+h_{2}[\mathrm{IIa}] \nonumber \\&+h_{T7}[\mathrm{TF:VIIa}]). \end{aligned}$$
(34)

Appendix 2: Description of reactions

1.1 Generation and depletion of factors VIIa, VII:

Tissue Factor (TF), an integral membrane protein gets exposed to blood upon blood vessel injury. It binds clotting factor VII/VIIa present in the plasma. Free, and tissue factor-bound factor VII is activated by factors IIa and Xa [51]. The TF–VIIa complex initiates the “extrinsic pathway” of blood coagulation. Clot formation proceeds by activation of zymogens factor IX and factor X [52]. TFPI exhibits a Xa-dependent inhibition of TF-VIIa [19].

1.2 Generation and depletion of factors IXa, IX:

While activation of factor IX by the tissue factor–factor VIIa complex is predominant and requires a membrane surface, that by factor XI is also important and is independent of a membrane surface [21, 53]. However, since we assume that the intrinsic pathway is inhibited, we neglect the role of factor XI in the present model. Inactivation of the activated factor IX occurs by the action of ATIII in the plasma [37, 54].

1.3 Generation and depletion of factors Xa, X:

Activation of factor X occurs by the tissue factor–factor VIIa complex, i.e., the extrinsic tenase complex (via extrinsic pathway), and by the factor VIIIa–factor IXa complex, i.e., the intrinsic tenase complex (via intrinsic pathway). Activated factor X then combines with activated factor V to form the platelet membrane-bound prothrombinase complex [12, 55]. Following the inactivation of factor Va (in the prothrombinase complex) by APC, dissociation of factor Xa from the membrane surface occurs. The dissociated factor Xa is then removed by flow and/or inactivated by ATIII and TFPI in plasma [56].

1.4 Generation and depletion of factors IIa, II:

Activation of the zymogen prothrombin to the enzyme thrombin occurs predominantly by the action of prothrombinase on activated membrane surface [20]. However, small amounts of prothrombin are also activated in plasma at a low rate by factor Xa [10]. Thrombin is primarily inhibited by ATIII [37].

1.5 Generation and depletion of activated and resting platelets:

The tissue factor and collagen exposed due to disruption of sub-endothelium lead to activation of platelets. In addition to converting fibrinogen to fibrin, thrombin plays a major role in activating platelets [12, 57]. Also, platelets are constitutively activated once they come in contact with other activated platelets in the plasma or on the sub-endothelial surface [57].

1.6 Generation and depletion of factors VIIIa, VIII:

Thrombin-activation of factor VIII does not necessarily require a membrane surface. However, activation of factor VIII by activated factor X, which is also an important reaction, requires activated platelets [58, 59]. On being activated, factor VIII shows cofactor activity in conjunction with activated factor IX [21]. Inhibition of activated factor VIII occurs due to the proteolytic attack by activated protein C (APC) on the membrane surface, apart from spontaneous decay [60].

1.7 Formation and dissociation of intrinsic tenase complex (\(\hbox {VIIIa}^{m}\) : \(\hbox {IXa}^{m}\)):

On activation, activated factor IX combines with its active cofactor, factor VIIIa, and forms intrinsic tenase complex on the surface of activated platelets. This procoagulant complex then activates factor X via the intrinsic pathway [21, 25].

1.8 Generation and depletion of factor Va, V:

Activation of factor V to its cofactor state, factor Va, occurs by the action of thrombin [7], as well as by that of factor Xa (on the membrane surface) [61]. Competitive binding of APC to factor Va (which we have not included) followed by cleavage leads to inactivation of factor Va [62], apart from spontaneous decay just like factor VIIIa.

1.9 Formation and dissociation of prothrombinase complex (\(\hbox {Xa}^{m}\) : \(\hbox {Va}^{m}\)):

Factor Va, the cofactor of factor Xa, binds it on the platelet membrane surface giving rise to the prothrombinase complex which converts prothrombin to thrombin [55, 62].

1.10 Generation and depletion of ATIII and TFPI:

While ATIII is a major physiologic inhibitor of almost all serine proteases produced during the process of blood coagulation process, TFPI mainly targets factor Xa and the TF–VIIa-factor Xa complex. Heparin-catalyzed ATIII-inhibition of factors IX, X and II is faster than the uncatalyzed reaction [54]. Since heparin is released from endothelial cells upon injury, in our case, we assume that the amount of heparin present is negligible as endothelial cells are not present in plasma in vitro. Inactivation by ATIII and TFPI occurs once the clotting enzymes escape into the plasma from the site of thrombus formation [20].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Susree, M., Anand, M. A mathematical model for in vitro coagulation of blood: role of platelet count and inhibition. Sādhanā 42, 291–305 (2017). https://doi.org/10.1007/s12046-017-0602-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12046-017-0602-3

Keywords

Navigation