Skip to main content
Log in

On stability of tangent bundle of toric varieties

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

Let X be a nonsingular complex projective toric variety. We address the question of semi-stability as well as stability for the tangent bundle T X. In particular, a complete answer is given when X is a Fano toric variety of dimension four with Picard number at most two, complementing the earlier work of Nakagawa (Tohoku. Math. J. 45 (1993) 297–310; 46 (1994) 125–133). We also give an infinite set of examples of Fano toric varieties for which TX is unstable; the dimensions of this collection of varieties are unbounded. Our method is based on the equivariant approach initiated by Klyachko (Izv. Akad. Nauk. SSSR Ser. Mat. 53 (1989) 1001–1039, 1135) and developed further by Perling (Math. Nachr. 263/264 (2004) 181–197) and Kool (Moduli spaces of sheaves on toric varieties, Ph.D. thesis (2010) (University of Oxford); Adv. Math. 227 (2011) 1700–1755).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah M F, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957) 181–207

    Article  MathSciNet  Google Scholar 

  2. Aubin T, Équations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sci. Math. 102 (1978) 63–95

    MathSciNet  MATH  Google Scholar 

  3. Birkar C, Cascini P, Hacon C D and McKernan J, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010) 405–468

    Article  MathSciNet  Google Scholar 

  4. Batyrev V V, Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties, J. Algebraic Geom. 3 (1994) 493–535

    MathSciNet  MATH  Google Scholar 

  5. Batyrev V V, On the classification of toric Fano 4-folds, J. Math. Sci. 94 (1999) 1021–1050

    Article  MathSciNet  Google Scholar 

  6. Biswas I and Parameswaran A J, On the equivariant reduction of structure group of a principal bundle to a Levi subgroup, J. Math. Pures Appl. 85 (2006) 54–70

    Article  MathSciNet  Google Scholar 

  7. Biswas I, Dumitrescu S and Lehn M, On the stability of flat complex vector bundles over parallelizable manifolds, Com. Ren. Math. Acad. Sci. Paris 358 (2020) 151–158

    Google Scholar 

  8. Fahlaoui R, Stabilité du fibré tangent des surfaces de del Pezzo, Math. Ann. 283 (1989) 171–176

    Article  MathSciNet  Google Scholar 

  9. Fulton W, Introduction to Toric Varieties, Annals of Mathematics Studies, 131, (1993) (Princeton: Princeton University Press)

  10. Huybrechts D and Lehn M, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, (1997) (Braunschweig: Friedr. Vieweg & Sohn) xiv+269 pp., ISBN: 3-528-06907-4

  11. Kleinschmidt P, A classification of toric varieties with few generators, Aequationes Math. 35 (1988) 254–266

    Article  MathSciNet  Google Scholar 

  12. Klyachko A A, Equivariant bundles over toric varieties, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989) 1001–1039, 1135; translation in Math. USSR-Izv. 35(2) (1990) 337–375

  13. Kobayashi S, Differential Geometry of Complex Vector Bundles, Publications of the Mathematical Society of Japan, vol. 15 (1987) (Princeton: Princeton University Press)

  14. Kool M, Moduli spaces of sheaves on toric varieties, Ph.D. thesis (2010) (University of Oxford)

  15. Kool M, Fixed point loci of moduli spaces of sheaves on toric varieties, Adv. Math. 227 (2011) 1700–1755

    Article  MathSciNet  Google Scholar 

  16. Lübke M, Stability of Einstein–Hermitian vector bundles, Manuscripta Math. 42 (1983) 245–257

    Article  MathSciNet  Google Scholar 

  17. Nakagawa Y, Einstein–Kähler toric Fano fourfolds, Tohoku Math. J. 45 (1993) 297–310

    Article  MathSciNet  Google Scholar 

  18. Nakagawa Y, Classification of Einstein–Kähler toric Fano fourfolds, Tohoku Math. J. 46 (1994) 125–133

    Article  MathSciNet  Google Scholar 

  19. Oda T, Convex Bodies and Algebraic Geometry: An Introduction to the Theory of Toric Varieties, translated from the Japanese, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 15 (1988) (Berlin: Springer-Verlag)

  20. Perling M, Graded rings and equivariant sheaves on toric varieties, Math. Nachr. 263/264 (2004) 181–197

    Article  MathSciNet  Google Scholar 

  21. Steffens A, On the stability of the tangent bundle of Fano manifolds, Math. Ann. 304 (1996) 635–643

    Article  MathSciNet  Google Scholar 

  22. Yau S-T, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978) 339–411

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for many useful comments and suggestions that have helped to improve the exposition. The first-named author is supported by a J. C. Bose Fellowship. The second-named author is supported by a SERB MATRICS research grant. The third-named author is supported by Narodowe Centrum Nauki 2018/30/E/ST1/00530. The last-named author has been supported in part by an SRP grant from METU NCC and a SERB MATRICS grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mainak Poddar.

Additional information

Communicating Editor: Parameswaran Sankaran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, I., Dey, A., Genc, O. et al. On stability of tangent bundle of toric varieties. Proc Math Sci 131, 36 (2021). https://doi.org/10.1007/s12044-021-00623-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12044-021-00623-w

Keywords

2010 Mathematics Subject Classification

Navigation