Skip to main content
Log in

Bias expansion of spatial statistics and approximation of differenced lattice point counts

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract.

Investigations of spatial statistics, computed from lattice data in the plane, can lead to a special lattice point counting problem. The statistical goal is to expand the asymptotic expectation or large-sample bias of certain spatial covariance estimators, where this bias typically depends on the shape of a spatial sampling region. In particular, such bias expansions often require approximating a difference between two lattice point counts, where the counts correspond to a set of increasing domain (i.e., the sampling region) and an intersection of this set with a vector translate of itself. Non-trivially, the approximation error needs to be of smaller order than the spatial region’s perimeter length. For all convex regions in 2-dimensional Euclidean space and certain unions of convex sets, we show that a difference in areas can approximate a difference in lattice point counts to this required accuracy, even though area can poorly measure the lattice point count of any single set involved in the difference. When investigating large-sample properties of spatial estimators, this approximation result facilitates direct calculation of limiting bias, because, unlike counts, differences in areas are often tractable to compute even with non-rectangular regions. We illustrate the counting approximations with two statistical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barvinok A I, Polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed, Math. Oper. Res. 19 (1994) 769–779

    Article  MathSciNet  MATH  Google Scholar 

  2. Barvinok A I and Pommersheim J, An algorithmic theory of lattice points in polyhedra, in: New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996–1997) (Math. Sci. Res. Inst. Publ., vol. 38. Cambridge Univ. Press, Cambridge) (1999) pp. 91–147

    Google Scholar 

  3. Cliff A D, and Ord J K, Spatial processes, models and application (London: Pion Limited) (1981)

    Google Scholar 

  4. Cressie N, Statistics for spatial data, 2nd edition (New York: Wiley) (1993)

    Google Scholar 

  5. De Loerab J A, Hemmeckeb R, Tauzera J and Yoshidab R, Effective lattice point counting in rational convex polytopes, J. Symbolic Computat. 38 (2004) 1273–1302

    Article  Google Scholar 

  6. Dyer M, and Kannan R, On Barvinoks algorithm for counting lattice points in fixed dimension, Math. Oper. Res. 22 (1997) 545–549

    Article  MathSciNet  MATH  Google Scholar 

  7. Ehrhart E, Polynômes arithmétiques et methode des polyédres en combinatoire, International Series of Numerical Mathematics, 35 (Basel: Birkhäuser) (1977)

    Google Scholar 

  8. Fuentes M, Fixed-domain asymptotics for variograms using subsampling, Math. Geol. 33 (2001) 679–691

    Article  MathSciNet  MATH  Google Scholar 

  9. Fuller W, Introduction to statistical time series, 2nd edition (New York: Wiley) (1996)

    MATH  Google Scholar 

  10. Guyon X, Random fields on a network (Springer, New York) (1995)

    MATH  Google Scholar 

  11. Hall P, Horowitz J L and Jing B-Y, On blocking rules for the bootstrap with dependent data, Biometrika 82 (1995) 561–574

    Article  MathSciNet  MATH  Google Scholar 

  12. Huxley M N, Exponential sums and lattice points II, Proc. London Math. Soc. 66 (1993) 279–301

    Article  MathSciNet  MATH  Google Scholar 

  13. Huxley M N, Area, lattice points, and exponential sums (New York: Oxford University Press) (1996)

    MATH  Google Scholar 

  14. Kelly P J, and Weiss M L, Geometry and Convexity (New York: Wiley) (1979)

    MATH  Google Scholar 

  15. Krätzel E, Lattice points (Berlin: Deutscher Verlag Wiss.) (1988)

    MATH  Google Scholar 

  16. Künsch H R, The jackknife and the bootstrap for general stationary observations, Ann. Statist. 17 (1989) 1217–1261

    Article  MathSciNet  MATH  Google Scholar 

  17. Lenstra H W, Integer programming with a fixed number of variable, Math. Oper. Res. 8 (1983) 538–548

    Article  MathSciNet  MATH  Google Scholar 

  18. McAllister T B and Woods K M, The minimum period of the Ehrhart quasi-polynomial of a rational polytope, J. Combin. Theory A109 (2005) 345–352

    Article  MathSciNet  Google Scholar 

  19. Matheron G, The theory of regionalized random variables and its applications, Les Cahiers du Centre de Morphologie Mathematique, Fasc. 5, Centre de Geostatistique, Fontainebleau (1971)

  20. Nordman D J and Lahiri S N, On optimal spatial subsample size for variance estimation, Ann. Statist. 32 (2004) 1981–2027

    Article  MathSciNet  MATH  Google Scholar 

  21. Pick G, Geometrishes zur Zahlentheorie, Sitzenber. Lotos 19 (1899) 311–319

    Google Scholar 

  22. Politis D N and Romano J P, Large sample confidence regions based on subsamples under minimal assumptions, Ann. Statist. 22 (1994) 2031–2050

    Article  MathSciNet  MATH  Google Scholar 

  23. Politis D N and White H, Automatic block-length selection for the dependent bootstrap, Economet. Revi. 23 (2004) 53–70

    Article  MathSciNet  MATH  Google Scholar 

  24. Politis D N, Romano J P and Wolf M, Subsampling (New York: Springer) (1999)

    Book  MATH  Google Scholar 

  25. Possolo A, Subsampling a random field spatial statistics and imaging (ed.) A Possolo, IMS Lecture Notes Monograph Series 20 (CA: Institute of Mathematical Statistics, Hayward) (1991) pp. 286–294

    Google Scholar 

  26. Sherman M, Variance estimation for statistics computed from spatial lattice data, J. R. Stat. Soc. B58 (1996) 509–523

    MathSciNet  Google Scholar 

  27. Sherman M and Carlstein E, Nonparametric estimation of the moments of a general statistic computed from spatial data, J. Amer. Statist. Assoc. 89 (1994) 496–500

    Article  MathSciNet  MATH  Google Scholar 

  28. Stanley R P, Enumerative combinatorics, vol I (California: Wadsworth, Belmont) (1986)

    Google Scholar 

  29. van der Corput J C, Über Gitterpunkte in der Ebene, Math. Ann. 81 (1920) 1–20

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DANIEL J NORDMAN.

Rights and permissions

Reprints and permissions

About this article

Cite this article

NORDMAN, D.J., LAHIRI, S.N. Bias expansion of spatial statistics and approximation of differenced lattice point counts. Proc Math Sci 121, 229–244 (2011). https://doi.org/10.1007/s12044-011-0024-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12044-011-0024-9

Keywords.

Navigation