Skip to main content
Log in

Effects of \(f({\mathfrak {R}},{\mathbb {T}}^2)\) gravity on the stability of anisotropic perturbed Einstein Universe

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, we study the stability of the Einstein static Universe against anisotropic homogeneous perturbations in energy–momentum squared gravity. For this purpose, we consider Bianchi IX space–time with isotopic matter distribution and use small perturbations on the fluid variables as well as scale factors. We consider particular models of this theory to explore stable modes of the Einstein cosmos for both conserved as well as non-conserved energy–momentum tensor. It is found that stable modes of the Einstein Universe appear in both cases for specific values of the equation of state parameter. The stable solutions increase for positive values of the model parameter. It is worth mentioning here that stable regions exist in contrast to general relativity. We conclude that stable solutions increase here compared to other alternative gravitational theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G F R Ellis and R Maartens, Class. Quantum Grav. 21, 223 (2004); G F R Ellis, J Murugan and C G Tsagas, Class. Quantum Grav. 21, 233 (2004)

  2. S Bag, V Sahni, Y Shtanov and S Unnikrishnan, J. Cosmol. Astropart. Phys. 07, 034 (2014)

    Article  ADS  Google Scholar 

  3. G W Gibbons, Nucl. Phys. B 292, 784 (1987)

    Article  ADS  Google Scholar 

  4. J D Barrow and K Yamamoto, Phys. Rev. D 85, 083505 (2012)

    Article  ADS  Google Scholar 

  5. J W Moffat, J. Cosmol. Astropart. Phys. 10, 012 (2005); R Sung, J Short and P Coles, Mon. Not. R. Astron. Soc. 412, 492 (2011); P K Aluri and P Jain, Mod. Phys. Lett. A 27, 1250014 (2012)

  6. W R Stoeger, R Maartens and G F R Ellis, Astrophys. J. 443, 1 (1995); A Berera, R V Buniy and T W Kephart, J. Cosmol. Astropart. Phys. 10, 016 (2004); C Gordon, W Hu, D Huterer and T M Crawford, Phys. Rev. D 72, 103002 (2005)

  7. G F R Ellis, R Maartens and M A H MacCallum, Relativistic cosmology (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  8. J D Barrow and M S Turner, Nature 292, 35 (1982); M Demianski, Nature 307, 140 (1984)

  9. J D Barrow et al, Class. Quantum Grav. 20, 155 (2003)

    Article  Google Scholar 

  10. G Cognola et al, Phys. Rev. D 77, 046009 (2008); A D Felice and S R Tsujikawa, Living Rev. Relativ. 13, 3 (2010); S Nojiri and S D Odintsov, Phys. Rep. 505, 59 (2011)

  11. T Harko et al, Phys. Rev. D 84, 024020 (2011); M Sharif and M Z Gul, Eur. Phys. J. Plus 133, 345 (2018); Int. J. Mod. Phys. D 28, 1950054 (2019); Chin. J. Phys. 57, 329 (2019); Mod. Phys. Lett. A 36, 2150214 (2021)

  12. Z Haghani et al, Phys. Rev. D 88, 044023 (2013)

    Article  ADS  Google Scholar 

  13. N Katirci and M Kavuk, Eur. Phys. J. Plus 129, 163 (2014)

    Article  Google Scholar 

  14. M Roshan and F Shojai, Phys. Rev. D 94, 044002 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. C V R Board and J D Barrow, Phys. Rev. D 96, 123517 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. O Akarsu et al, Phys. Rev. D 98, 6 (2018)

    Article  MathSciNet  Google Scholar 

  17. P H R S Moraes and P K Sahoo, Phys. Rev. D 97, 2 (2018)

    Article  Google Scholar 

  18. N Nari and M Roshan, Phys. Rev. D 98, 024031 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. S Bahamonde, M Marciu and P Rudra, Phys. Rev. D 100, 083511 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  20. P Rudra and B Pourhassan, Phys. Dark Universe 33, 100849 (2021)

    Article  Google Scholar 

  21. C Ranjit, P Rudra and S Kundu, Ann. Phys. 428, 168432 (2021)

    Article  Google Scholar 

  22. M Sharif and M Z Gul, Phys. Scr. 96, 025002 (2020); 96, 125007 (2021); Eur. Phys. J. Plus 136, 503 (2021); Adv. Astron. 2021, 6663502 (2021)

  23. M Sharif and M Z Gul, Int. J. Mod. Phys. A 36, 2150004 (2021); Mod. Phys. Lett. A 36, 2150214 (2021); Chin. J. Phys. 71, 365 (2021); Universe 7, 154 (2021); Int. J. Geom. Methods Mod. Phys. 19, 2250012 (2021); Mod. Phys. Lett. A 37, 2250005 (2022)

  24. C G Bohmer, L Hollenstein and F S N Lobo, Phys. Rev. D 76, 084005 (2007); S S Seahra and C G Bohmer, Phys. Rev. D 79, 064009 (2009)

  25. C G Bohmer and F S N Lobo, Phys. Rev. D 79, 067504 (2009)

    Article  ADS  Google Scholar 

  26. J T Li, C C Lee and C Q Geng, Eur. Phys. J. C 73, 2315 (2013)

    Article  ADS  Google Scholar 

  27. H Huang, P Wu and H Yu, Phys. Rev. D 91, 023507 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  28. C G Bohmer, N Tamanini and M Wright, Phys. Rev. D 92, 124067 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. H Shabani and A H Ziaie, Eur. Phys. J. C 77, 31 (2017)

    Article  ADS  Google Scholar 

  30. M Sharif and A Waseem, Mod. Phys. Lett. A 33, 1850216 (2018); Eur. Phys. J. Plus 133, 160 (2018)

  31. M Sharif and A Waseem, Astrophys. Space Sci. 364, 221 (2019)

    Article  ADS  Google Scholar 

  32. M Sharif and M Z Gul, Phys. Scr. 96, 105001 (2021)

    Article  ADS  Google Scholar 

  33. C Y Chen and P Chen, Phys. Rev. D 101, 064021 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  34. A K Banerjee and N O Santos, Gen. Relativ. Gravit. 16, 217 (1984)

    Article  ADS  Google Scholar 

  35. M Gasperini and G Veneziano, Phys. Rep. 373, 1 (2003); J Khoury, P J Steinhardt and N Turok, Phys. Rev. Lett. 92, 031302 (2004)

  36. S D Campo, R Herrera and P Labrana, J. Cosmol. Astropart. Phys. 07, 006 (2009)

    Article  Google Scholar 

  37. M Sharif and A Ikram, Eur. Phys. J. Plus 132, 526 (2017); Astrophys. Space Sci. 363, 10 (2018)

  38. A Kazemi et al, Eur. Phys. J. C 80, 20 (2020)

    Article  Google Scholar 

  39. P A R Ade, Astron. Astrophys. A 594, 13 (2016)

    Article  Google Scholar 

  40. M Sharif and A Ikram, Int. J. Mod. Phys. D 26, 1750084 (2017); M Sharif and S Saleem, Mod. Phys. Lett A 35, 2050152 (2020); ibid. 2050222

  41. O Akarsu, N Katirci and K Suresh, Phys. Rev. D 97, 024011 (2018)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Pakistan Academy of Sciences Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Sharif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, M., Gul, M.Z. Effects of \(f({\mathfrak {R}},{\mathbb {T}}^2)\) gravity on the stability of anisotropic perturbed Einstein Universe. Pramana - J Phys 96, 153 (2022). https://doi.org/10.1007/s12043-022-02399-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02399-8

Keywords

PACS Nos

Navigation