Skip to main content
Log in

Investigation of graphene-integrated tunable metamaterials in THz regime

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A metallic fishnet metamaterial structure in sub-THz region is presented. The proposed structure is based on hexagonal resonators. Simulations have been performed by a 3D full-wave electromagnetic simulator and a negative refractive index has been observed at the frequency range between 0.55 and 0.70 THz with the help of the graphene layer. In order to observe the effect of the graphene layer, the metamaterial structure has been simulated and examined before and after graphene integration. Significant modification in the propagation properties has been observed after the graphene integration. Change in S-parameters with the size variation of hexagonal resonators and alteration in graphene thickness are also presented as a parametric study to show the tunability of the structure. Suitability of the metamaterial for sensor applications has been investigated. The proposed metamaterial structure is promising to be effectively used for tunability and sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. V G Veselago, Sov. Phys. Usp. 10, 509 (1968)

    Article  ADS  Google Scholar 

  2. O T Gunduz and C Sabah, Opt. Eng. 54, 087101-1 (2015)

    Article  Google Scholar 

  3. W Li, X Zhou, Y Ying, X Qiao, F Qin, Q Li and S Che, AIP Adv. 5, 067151-1 (2015)

    Article  ADS  Google Scholar 

  4. F Dincer, M Karaaslan, E Unal, K Delihacioglu and C Sabah, Prog. Electromagn. Res. 144, 123 (2014)

    Article  Google Scholar 

  5. Z Yu, S Liu, C Fang, X Huang and H Yang, Phys. Scr. 90, 065501 (2015)

    Article  ADS  Google Scholar 

  6. W Withayachumnankul, IEEE Photon. J. 1, 99 (2009)

    Article  Google Scholar 

  7. H Tao, N I Landy, C M Bingham, X Zhang, R D Averitt and W J Padilla, Opt. Express 16, 7181 (2008)

    Article  ADS  Google Scholar 

  8. L Cong, S Tan, R Yahiaoui, F Yan, W Zhang and R Singh, Appl. Phys. Lett. 106, 031107 (2015)

    Article  ADS  Google Scholar 

  9. X He, S Yan, Q Ma, Q Zhang, P Jia, F Wu and J Jiang, Opt. Commun. 340, 44 (2015)

    Article  ADS  Google Scholar 

  10. B Mulla and C Sabah, Wave Random Complex 25, 382 (2015)

    Article  ADS  Google Scholar 

  11. S Ayas, G Bakan and A Dana, Opt. Express 23, 11763 (2015)

    Article  ADS  Google Scholar 

  12. H Wang and L Wang, Opt. Express 21, A1078 (2013)

    Article  ADS  Google Scholar 

  13. K I Bolotin, K J Sikes, Z Jiang, M Klima, G Fudenberg, J Hone, P Kim and H L Stormer, Solid State Commun. 146, 351 (2008)

    Article  ADS  Google Scholar 

  14. A K Geim, Science 324, 1530 (2009)

    Article  ADS  Google Scholar 

  15. N Papasimakis, Z Luo, Z X Shen, F De Angelis, E Di Fabrizio, A E Nikolaenko and N I Zheludev, Opt. Express 18, 8353 (2010)

    Article  ADS  Google Scholar 

  16. X He, Carbon 82, 229 (2015)

    Article  Google Scholar 

  17. X He, Z-Y Zhao and W Shi, Opt. Lett. 40, 178 (2015)

    Article  ADS  Google Scholar 

  18. X He, F Lin, F Liu and W Shi, Nanotechnology 27, 485202 (2016)

    Article  Google Scholar 

  19. X He, P Gao and W Shi, Nanoscale 8, 10388 (2016)

    Article  ADS  Google Scholar 

  20. Wei Su and Bingyan Chen, Pramana – J. Phys. 89, 37 (2017)

    Article  ADS  Google Scholar 

  21. C Sabah, Opt. Commun. 285, 4549 (2012)

    Article  ADS  Google Scholar 

  22. M P Ustunsoy and C Sabah, J. Alloys Compd. 687, 514 (2016)

    Article  Google Scholar 

  23. C Sabah and H G Roskos, Curr. Appl. Phys. 12, 443 (2012)

    Article  ADS  Google Scholar 

  24. A Mary, S G Rodrigo, F J Garcia-Vidal and L Martin-Moreno, Phys. Rev. Lett. 101, 103902-1 (2008)

  25. C Garcia-Meca, R Ortuno, F J Rodriguez-Fortuno, J Marti and A Martinez, Opt. Lett. 34, 1603 (2009)

    Article  ADS  Google Scholar 

  26. R Ortuno, C Garcia-Meca, F J Rodriguez-Fortuno, J Marti and A Martinez, Phys. Rev. B 79, 075425-1 (2009)

  27. Z Huang, J Xue, Y Hou, J Chu and D H Zhang, Phys. Rev. B 74, 193105-1 (2006)

    Article  ADS  Google Scholar 

  28. C Sabah and S Uckun, Prog. Electromagn. Res. 91, 349 (2009)

    Article  Google Scholar 

  29. N Chikhi, E Di Gennaro, E Esposito and A Andreone, in Terahertz and mid infrared radiation: Generation, detection and applications edited by Mauro F Pereira and Oleksiy Shulika (Springer, Dordrecht, 2011) p. 9

  30. C Sabah, J. Mater. Sci. Mater. 27, 4777 (2016)

    Article  Google Scholar 

  31. C Sabah, F Dincer, M Karaaslan, E Unal, O Akgol and E Demirel, Opt. Commun. 322, 137 (2014)

    Article  ADS  Google Scholar 

  32. C Sabah and H G Roskos, Eur. Phys. J. Appl. Phys. 61, 30402-1 (2013)

    Article  ADS  Google Scholar 

  33. C Sabah and H G Roskos, Microsyst. Technol. 18, 2071 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The work reported here was carried out at Middle East Technical University-Northern Cyprus Campus (METU-NCC). It is supported by METU-NCC under grant numbers of BAP-FEN-15-D-3 and BAP-FEN-16-K-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cumali Sabah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demir, S.M., Yüksek, Y. & Sabah, C. Investigation of graphene-integrated tunable metamaterials in THz regime. Pramana - J Phys 90, 65 (2018). https://doi.org/10.1007/s12043-018-1558-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1558-5

Keywords

PACS Nos

Navigation