Skip to main content
Log in

Numerical solution of the KdV equation by Haar wavelet method

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper aims to get numerical solutions of one-dimensional KdV equation by Haar wavelet method in which temporal variable is expanded by Taylor series and spatial variables are expanded with Haar wavelets. The performance of the proposed method is measured by four different problems. The obtained numerical results are compared with the exact solutions and numerical results produced by other methods in the literature. The comparison of the results indicate that the proposed method not only gives satisfactory results but also do not need large amount of CPU time. Error analysis of the proposed method is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. I Dag and Y Dereli, Appl. Math. Model. 32, 535 (2008)

    Article  MathSciNet  Google Scholar 

  2. A M Wazwaz, Chaos, Solitons and Fractals 28, 457 (2006)

    ADS  Google Scholar 

  3. G Das and J Sarma, Phys. Plasmas 6, 4394 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  4. A Osborne, Chaos, Solitons and Fractals 5, 2623 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  5. L Ostrovsky and Y A Stepanyants, Rev. Geophys. 27(3), 293 (1989)

    Article  ADS  Google Scholar 

  6. A Ludu and J P Draayer, Phys. Rev. Lett. 80, 2125 (1998)

    Article  ADS  Google Scholar 

  7. L Reatto and D Galli, Int. J. Mod. Phys. B 13, 607 (1999)

    Article  ADS  Google Scholar 

  8. S Turitsyn, A Aceves, C Jones and V Zharnitsky, Phys. Rev. E 58, R48 (1998)

    Article  ADS  Google Scholar 

  9. M W Coffey, Phys. Rev. B 54, 1279 (1996)

    Article  ADS  Google Scholar 

  10. C S Gardner, J M Greene, M D Kruskal and R M Miura, Phys. Rev. Lett. 19, 1095 (1967)

    Article  ADS  Google Scholar 

  11. M A Helal and M A Mehanna, Chaos, Solitons and Fractals 28, 320 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  12. T Geyikli and D Kaya, Appl. Math. Comput. 169, 971 (2005)

    MathSciNet  Google Scholar 

  13. L Xiangzheng and W Mingliang, Phys. Lett. A 361, 115 (2007)

    Article  MathSciNet  Google Scholar 

  14. Y Zhenya, Nonlinear Anal. 64, 901 (2006)

    Article  MathSciNet  Google Scholar 

  15. E J Kansa, Comput. Math. Appl. 19, 127 (1990)

    Article  MathSciNet  Google Scholar 

  16. E J Kansa and Y C Hon, Comput. Math. Appl. 39, 123 (2009)

    Article  MathSciNet  Google Scholar 

  17. M Dehghan and A Shokri, Nonlinear Dynam. 50, 111 (2007)

    Article  MathSciNet  Google Scholar 

  18. Siraj ul Islam, A J Khattak and I A Tirmizi, Eng. Anal. Boundary Elements 32, 849 (2008)

    Article  Google Scholar 

  19. M Inc, Encyclopedia of complexity and systems science (Springer-Verlag, New York, 2009) pp. 5161–5176

  20. J Donea, Int. J. Numer. Methods Eng. 20, 101 (1984)

    Article  Google Scholar 

  21. J Donea, S Giuliani and H Laval, Comput. Methods Appl. Mech. Eng. 45, 123 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  22. J Donea, L Quartapelle and V Selmin, J. Comput. Phys. 70, 463 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  23. B V R Kumar and M Mehra, BIT Numer. Math. 45, 543 (2005)

    Article  Google Scholar 

  24. A Canivar, M Sari and I Dag, Physica B 405, 3376 (2010)

    Article  ADS  Google Scholar 

  25. C Chen and C H Hsiao , Control Theory and Applications, IEE Proceedings 1997, Vol. 87–94, p. 144

  26. C H Hsiao and W J Wang, Math. Comput. Simul. 57, 347 (2001)

    Article  MathSciNet  Google Scholar 

  27. U Lepik, Math. Comput. Simul. 68, 127 (2005)

    Article  MathSciNet  Google Scholar 

  28. U Lepik, Appl. Math. Comput. 185, 695 (2007)

    MathSciNet  Google Scholar 

  29. U Lepik, Comput. Math. Appl. 61, 1873 (2011)

    Article  MathSciNet  Google Scholar 

  30. R C Mittal, H Kaur and V Mishra, Int. J. Comput. Math. 92(8), 1643 (2015)

    Article  MathSciNet  Google Scholar 

  31. O Oruc, F Bulut and A Esen, J. Math. Chem. 53(7), 1592 (2015)

    Article  MathSciNet  Google Scholar 

  32. S S Ray, Appl. Math. Comput. 218, 5239 (2012)

    MathSciNet  Google Scholar 

  33. M Kumar and S Pandit, Comput. Phys. Commun. 185(3), 809 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  34. J D Hunter, Comput. Sci. Eng. 9(3), 90 (2007)

    Article  Google Scholar 

  35. R M Miura, C S Gardner and M D Kruskal, J. Math. Phys. 6, 1204 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  36. N K Amein and M A Ramadan, J. Egypt. Math. Soc. 19, 118 (2011)

    Article  MathSciNet  Google Scholar 

  37. G A Gardner, L R T Gardner and A H A Ali, Comput. Meth. Appl. Mech. Eng. 92, 231 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  38. A Jeffrey and T Kakutani, SIAM Rev. 14(4), 547 (1972)

    MathSciNet  Google Scholar 

  39. A Berezin and V I Karpman, Sov. Phys. JETP 24, 1049 (1967)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F BULUT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ORUÇ, Ö., BULUT, F. & ESEN, A. Numerical solution of the KdV equation by Haar wavelet method. Pramana - J Phys 87, 94 (2016). https://doi.org/10.1007/s12043-016-1286-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-016-1286-7

Keywords

Pacs Nos.

Navigation