Skip to main content
Log in

The effect of impurity on transition frequency of bound polaron in quantum rods

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The Hamiltonian of a quantum rod with an ellipsoidal boundary is given after a coordinate transformation that changes the ellipsoidal boundary into a spherical one. The properties of the quantum rods constituting the bridge between two-dimensional quantum wells, zero-dimensional quantum dots and one-dimensional quantum wires are explored theoretically using linear combination operator method. The first internal excited state energy, the excitation energy and the transition frequency between the first internal excited and the ground states of the strong-coupled impurity-bound polaron in the rod with Coulomb-bound potential, the transverse effective confinement length, the ellipsoid aspect ratio and the electron–phonon coupling strength are studied. It is found that the first internal excited state energy, the excitation energy and the transition frequency are increasing functions of the Coulomb-bound potential and the electron–phonon coupling strength, whereas they are decreasing functions of the ellipsoid aspect ratio and the transverse effective confinement length. These results can be attributed to the interesting quantum size confining effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L H Li, G Patriarche, E H Linfield, S P Khanna and A G Davies, J. Appl. Phys. 108, 103522 (2010)

    Article  ADS  Google Scholar 

  2. J T Hu, L S Li, W D Yang, L Manna, L W Wang and A P Alvisatos, Science 292, 2060 (2001)

    Article  Google Scholar 

  3. S H Kan, T Mokari, E Rothenberg, E Rothenberg and U Banin, Nature (London) 2, 155 (2003)

    Article  ADS  Google Scholar 

  4. G Sek, P Podemski, J Misiewicz, L H Li, A Fiore and G Patriarche, Appl. Phys. Lett. 92, 021901 (2008)

    Article  ADS  Google Scholar 

  5. B Bruhn, J Valenta and J Linnros, Nanotechnol. 20, 505301 (2009)

    Article  Google Scholar 

  6. F Ratto, P Matteini, F Rossi and R Pini, J. Nanopart. Res. 12, 2029 (2010)

    Article  Google Scholar 

  7. X Z Li and J B Xia, Phys. Rev. B66, 115316 (2002)

    ADS  Google Scholar 

  8. F Comas, N Studart and G E Marques, Solid State Commun. 130, 477 (2004)

    Article  ADS  Google Scholar 

  9. Z X Sun, I Swart, C Delerue, D Vanmaekelbergh and P Liljeroth, Phys. Rev . Lett. 102, 196401 (2009)

    Article  ADS  Google Scholar 

  10. J L Xiao and C L Zhao, J. Low. Temp. Phys. 163, 302 (2011)

    Article  ADS  Google Scholar 

  11. S P Ahrenkiel, O I Micic, A Miedaner, C J Curtis, J M Nedeljkovic and A J Nozik, Nano. Lett. 3, 833 (2003)

    Article  ADS  Google Scholar 

  12. J Planelles, M Royo, A Ballester and M Pi, Phys. Rev . B80, 045324 (2009)

    ADS  Google Scholar 

  13. D Katz, T Wizansky, O Millo, E Rothenberg, T Mokari and U Banin, Phys. Rev . Lett. 89, 086801 (2002)

    Article  ADS  Google Scholar 

  14. H Htoon, J A Hollingsworth, R Dickerson and V I Klimov, Phys. Rev . Lett. 91, 227401 (2003)

    Article  ADS  Google Scholar 

  15. A Creti, M Z Rossi, G Lanzani, M Anni, L Manna and M Lomascolo, Phys. Rev . B73, 165410 (2006)

    ADS  Google Scholar 

  16. T A El-Brolossy, S Abdallah, T Abdallah, H Awad, M B Mohamed, S Negm and H Talaat, Eur. Phys. J. Special Topics 153, 369 (2008)

    Article  ADS  Google Scholar 

  17. H Talaat, T Abdallah, M B Mohamed, S Negm and M A El-Sayed, Chem. Phys. Lett. 473, 288 (2009)

    Article  ADS  Google Scholar 

  18. J L Xiao and C L Zhao, Superlatt. Microstruct. 49, 9 (2011)

    Article  ADS  Google Scholar 

  19. J B Li and L W Wang, Nano. Lett. 3, 101 (2003)

    Article  ADS  Google Scholar 

  20. S S Li and J B Xia, Appl. Phys. Lett. 92, 022102 (2008)

    Article  ADS  Google Scholar 

  21. Z W Wang and J L Xiao, Acta. Phys. Sin. 56, 678 (2007)

    Google Scholar 

  22. H J Li, J K Sun and J L Xiao, Chin. Phys. B19, 010314 (2010)

    ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Science Foundation of China under Grant No. 10964005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JING-LIN XIAO.

Rights and permissions

Reprints and permissions

About this article

Cite this article

XIAO, W., XIAO, JL. The effect of impurity on transition frequency of bound polaron in quantum rods. Pramana - J Phys 79, 1485–1493 (2012). https://doi.org/10.1007/s12043-012-0345-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-012-0345-y

Keywords

PACS Nos

Navigation