Skip to main content
Log in

Extracting science from surveys of our Galaxy

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Our knowledge of the Galaxy is being revolutionized by a series of photometric, spectroscopic and astrometric surveys. Already an enormous body of data is available from completed surveys, and data of ever-increasing quality and richness will accrue at least until the end of this decade. To extract science from these surveys, we need a class of models that can give probability density functions in the space of the observables of a survey – we should not attempt to ‘invert’ the data from the space of observables into the physical space of the Galaxy. Currently just one class of model has the required capability, the so-called ‘torus models’. A pilot application of torus models to understand the structure of the Galaxy’s thin and thick discs has already produced two significant results: a major revision of our best estimate of the Sun’s velocity with respect to the local standard of rest, and a successful prediction of the way in which the vertical velocity dispersion in the disc varies with distance from the Galactic plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F De Lorenzi, V P Debattista, O Gerhard and N Sambhus, Mon. Not. R. Astron. Soc. 376, 71 (2007)

    Article  ADS  Google Scholar 

  2. D Syer and S Tremaine, Mon. Not. R. Astron. Soc. 282, 223 (1996)

    ADS  Google Scholar 

  3. N Bissantz, V P Debattista and O Gerhard, Astrophys. J. 601, L155 (2004)

    Article  ADS  Google Scholar 

  4. A G A Brown, H M Velazquez and L A Aguilar, Mon. Not. R. Astron. Soc. 359, 1287 (2005)

    Article  ADS  Google Scholar 

  5. V Belokurov et al, Astrophys. J. 657, L89 (2007)

    Article  ADS  Google Scholar 

  6. P Englmaier and O Gerhard, Mon. Not. R. Astron. Soc. 304, 512 (1999)

    Article  ADS  Google Scholar 

  7. R Zánmar Sánchez, J A Sellwood, B J Weiner and T B Williams, Astrophys. J. 674, 797 (2008)

    Article  ADS  Google Scholar 

  8. A Eyre and J Binney, Mon. Not. R. Astron. Soc. 413, 1852 (2011)

    Article  ADS  Google Scholar 

  9. K V Johnston, H-S Zhao, D N Spergel and L Hernquist, Astrophys. J. 512, L109 (1999)

    Article  ADS  Google Scholar 

  10. B Burnett and J Binney, Mon. Not. R. Astron. Soc. 407, 339 (2010)

    Article  ADS  Google Scholar 

  11. M Schwarzschild, Astrophys. J. 232, 236 (1979)

    Article  ADS  Google Scholar 

  12. D Krajnović, M Cappellari, E Emsellem, R M McDermid and P T de Zeeuw, Mon. Not. R. Astron. Soc. 357, 1113 (2005)

    Article  ADS  Google Scholar 

  13. K Gebhardt et al, Astrophys. J. 583, 92 (2003)

    Article  ADS  Google Scholar 

  14. P McMillan and J Binney, Mon. Not. R. Astron. Soc. 390, 429 (2008)

    Article  ADS  Google Scholar 

  15. J Binney, Mon. Not. R. Astron. Soc. 401, 2318 (2010)

    Article  ADS  Google Scholar 

  16. R Häfner, N W Evans, W Dehnen and J Binney, Mon. Not. R. Astron. Soc. 314, 433 (2000)

    Article  ADS  Google Scholar 

  17. J Thomas, R P Saglia, R Bender, D Thomas, K Gebhardt, J Magorrian, E M Corsini and G Wegner, Mon. Not. R. Astron. Soc. 360, 1355 (2005)

    Article  ADS  Google Scholar 

  18. J Binney and S Tremaine, Galactic dynamics (Princeton University Press, Princeton, 2008)

    MATH  Google Scholar 

  19. D F Malin and D Carter, Nature 285, 643 (1980)

    Article  ADS  Google Scholar 

  20. P Quinn, Astrophys. J. 279, 596 (1984)

    Article  ADS  Google Scholar 

  21. F Schweizer and P Seitzer, Astron. J. 104, 1039 (1992)

    Article  ADS  Google Scholar 

  22. A Kalnajs, Astrophys. J. 212, 637 (1977)

    Article  ADS  Google Scholar 

  23. M Kaasalainen, Mon. Not. R. Astron. Soc. 275, 162 (1995)

    ADS  Google Scholar 

  24. W Dehnen and O E Gerhard, Mon. Not. R. Astron. Soc. 261, 311 (1993)

    ADS  Google Scholar 

  25. O E Gerhard and P Saha, Mon. Not. R. Astron. Soc. 251, 449 (1991)

    ADS  MATH  Google Scholar 

  26. M Weinberg, Astrophys. J. 421, 481 (1994)

    Article  ADS  Google Scholar 

  27. J Binney and P McMillan, Mon. Not. R. Astron. Soc., in press (arXiv1101.0747) (2011)

  28. J Holmberg, B Nordström and J Andersen, Astron. Astrophys. 475, 519 (2007)

    Article  ADS  Google Scholar 

  29. G Gilmore and N Reid, Mon. Not. R. Astron. Soc. 202, 1025 (1983)

    ADS  Google Scholar 

  30. W Dehnen and J Binney, Mon. Not. R. Astron. Soc. 294, 429 (1998)

    Article  ADS  Google Scholar 

  31. R Schönrich, J Binney and W Dehnen, Mon. Not. R. Astron. Soc. 403, 1829 (2010)

    Article  ADS  Google Scholar 

  32. N A Bond et al, Astrophys. J. 716, 1 (2010)

    Article  ADS  Google Scholar 

  33. B Fuchs et al, Astron. J. 137, 4149 (2009)

    Article  ADS  Google Scholar 

  34. M Steinmetz et al, Astron. J. 132, 1645 (2006)

    Article  ADS  Google Scholar 

  35. B Burnett, Stellar parameter estimation from spectrophotometric data, D.Phil thesis (University of Oxford, 2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JAMES BINNEY.

Rights and permissions

Reprints and permissions

About this article

Cite this article

BINNEY, J. Extracting science from surveys of our Galaxy. Pramana - J Phys 77, 39–52 (2011). https://doi.org/10.1007/s12043-011-0110-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0110-7

Keywords

PACS Nos

Navigation