Skip to main content

Advertisement

Log in

Biological Activities of Artemisinins Beyond Anti-Malarial: a Review

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Artemisinins, as a class of bioactive molecules, are mainly derived from the extracts of Artemisia annua L. and are the mainstay for malaria treatment, including severe malaria, uncomplicated malaria and multi-drug resistant malaria. They are well-known for their good tolerability, safety and rapid onset of action. Their efficacy is not only limited to malaria but also extends to a variety of human diseases such as cancer, tuberculosis, viral diseases (e.g. Human cytomegalovirus), immune diseases and parasitic infections like schistosomiasis. Being a cheap and safe drug class, which saves millions of lives at risk from malaria around the globe, can also have significant potential in oncology as they have shown anti-cancer properties in both cell lines and animal models. Active derivatives (e.g. artesunate, artemether and arteether etc.) have also been synthesized which can be used for oral, rectal, intramuscular and intravenous administration. A comprehensive update on the non-malarial use of artemisinins and/or their derivatives and artemisinin-based drug development beyond anti-malarial is discussed in this review. With the collaborative efforts in the clinical pharmacology of artemisinins and novel synthesis of artemisinin analogues, it is likely that artemisinin-based drugs will become an important armamentarium impeding a number of diseases beyond malaria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adenowo AF, Oyinloye BE, Ogunyinka BI, Kappo AP (2015) Impact of human schistosomiasis in sub-Saharan. Africa Brazilian Journal of Infectious Diseases 19:196–205

    Article  Google Scholar 

  • Ali Z, Mishra N, Baldi A (2016) Development and characterization of arteether-loaded nanostructured lipid carriers for the treatment of malaria. Artificial cells, nanomedicine, and biotechnology 44:545–549

    Article  CAS  PubMed  Google Scholar 

  • Ali M, Abbasi BH, Ahmad N, Khan H, Ali GS (2017) Strategies to enhance biologically active-secondary metabolites in cell cultures of Artemisia–current trends. Crit Rev Biotechnol 37:833–851

    Article  CAS  PubMed  Google Scholar 

  • Alonso PL, Brown G, Arevalo-Herrera M, Binka F, Chitnis C, Collins F, Doumbo OK, Greenwood B, Hall BF, Levine MM, Mendis K, Newman RD, Plowe CV, Rodríguez MH, Sinden R, Slutsker L, Tanner M (2011) A research agenda to underpin malaria eradication. PLoS Med 8:e1000406

    Article  PubMed  PubMed Central  Google Scholar 

  • Aregawi M, Cibulskis RE, Otten M, Williams R (2009) World malaria report 2009. World Health Organization

  • Bai Z, Guo X-H, Tang C, Yue S-T, Shi L, Qiang B (2018) Effects of Artesunate on the expressions of insulin-like growth Factor-1, Osteopontin and C-Telopeptides of type II collagen in a rat model of. Osteoarthritis Pharmacology 101:1–8

    PubMed  Google Scholar 

  • Banyai W, Kirdmanee C, Mii M, Supaibulwatana K (2010) Overexpression of farnesyl pyrophosphate synthase (FPS) gene affected artemisinin content and growth of Artemisia annua L plant cell. Tissue and Organ Culture (PCTOC) 103:255–265

    Article  CAS  Google Scholar 

  • Barger-Kamate B, Forman M, Sangare CO, Haidara ASA, Maiga H, Vaidya D, Djimde A, Arav-Boger R (2016) Effect of artemether-lumefantrine (Coartem) on cytomegalovirus urine viral load during and following treatment for malaria in children. J Clin Virol 77:40–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassat Q (2011) The use of artemether-lumefantrine for the treatment of uncomplicated Plasmodium vivax malaria. PLoS Negl Trop Dis 5:e1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begue J-P, Bonnet-Delpon D, Crousse B, Ourevitch M, Chorki F, Grellepois F, Magueur G (2008) Artemisinine derivatives, and uses thereof for treating malaria. Google Patents

  • Bellone M (2010) Autoimmune Disease: Pathogenesis eLS

  • Blazquez AG, Fernandez-Dolon M, Sanchez-Vicente L, Maestre AD, Gomez-San Miguel AB, Alvarez M, Serrano MA, Jansen H, Efferth T, Marin JJG, Romero MR (2013) Novel artemisinin derivatives with potential usefulness against liver/colon cancer and viral hepatitis. Bioorg Med Chem 21:4432–4441

    Article  CAS  PubMed  Google Scholar 

  • Bloom BR (1994) Tuberculosis: pathogenesis, protection, and control. ASM press

  • Carter R, Mendis KN (2003) Evolutionary and historical aspects of the burden of Malaria. Clin Microbiol Rev 16:173

    Article  PubMed Central  Google Scholar 

  • Chen J, Chen X, Wang F, Gao H, Hu W (2015) Dihydroartemisinin suppresses glioma proliferation and invasion via inhibition of the ADAM17 pathway. Neurol Sci 36:435–440

    Article  PubMed  Google Scholar 

  • Chen X, Wong Y, Lim T, Lim W, Lin Q, Wang J, Hua Z (2017) Artesunate activates the intrinsic apoptosis of HCT116 cells through the suppression of fatty acid synthesis and the NF-κB pathway. Molecules 22:1272

    Article  PubMed Central  CAS  Google Scholar 

  • Cheng C et al (2018) Induction of autophagy and autophagy-dependent apoptosis in diffuse large B-cell lymphoma by a new antimalarial artemisinin derivative. SM 1044 Cancer medicine 7:380–396

    CAS  Google Scholar 

  • Choi W (2017a) Novel pharmacological activity of artesunate and artemisinin: their potential as anti-tubercular agents. J Clin Med 6(30)

    Article  PubMed Central  CAS  Google Scholar 

  • Choi WH (2017b) Novel pharmacological activity of artesunate and artemisinin: their potential as anti-tubercular agents. J Clin Med 6(30)

    Article  PubMed Central  CAS  Google Scholar 

  • Committee WMPA, Secretariat (2012) Malaria policy advisory committee to the WHO: conclusions and recommendations of September 2012 meeting. Springer,

  • Cox FE (2010) History of the discovery of the malaria parasites and their vectors. Parasit Vectors 3:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Crellen T, Walker M, Lamberton PH, Kabatereine NB, Tukahebwa EM, Cotton JA, Webster JP (2016) Reduced efficacy of praziquantel against Schistosoma mansoni is associated with multiple rounds of mass drug administration. Clin Infect Dis 63:1151–1159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui X, Wang Y, Kokudo N, Fang D, Tang W (2010) Traditional Chinese medicine and related active compounds against hepatitis B virus infection bioscience trends 4

    Google Scholar 

  • Czechowski T, Larson TR, Catania TM, Harvey D, Brown GD, Graham IA (2016) Artemisia annua mutant impaired in artemisinin synthesis demonstrates importance of nonenzymatic conversion in terpenoid metabolism. Proc Natl Acad Sci 113:15150–15155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doenhoff MJ, Cioli D, Utzinger J (2008) Praziquantel: mechanisms of action, resistance and new derivatives for schistosomiasis. Curr Opin Infect Dis 21:659–667

    Article  CAS  PubMed  Google Scholar 

  • Durantel D, Carrouée-Durantel S, Branza-Nichita N, Dwek RA, Zitzmann N (2004) Effects of interferon, ribavirin, and iminosugar derivatives on cells persistently infected with noncytopathic bovine viral diarrhea virus. Antimicrob Agents Chemother 48:497–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efferth T (2017) From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. In: Seminars in cancer biology, vol 46. Elsevier, pp 65–83

  • Efferth T, Romero MR, Wolf DG, Stamminger T, Marin JJ, Marschall M (2008) The antiviral activities of artemisinin and artesunate. Clin Infect Dis 47:804–811

    Article  CAS  PubMed  Google Scholar 

  • El-Lakkany NM, el-Din SHS (2013) Haemin enhances the in vivo efficacy of artemether against juvenile and adult Schistosoma mansoni in mice parasitology research, vol 112, pp 2005–2015

    Google Scholar 

  • Falzon D, Jaramillo E, Wares F, Zignol M, Floyd K, Raviglione MC (2013) Universal access to care for multidrug-resistant tuberculosis: an analysis of surveillance data. Lancet Infect Dis 13:690–697

    Article  PubMed  Google Scholar 

  • Feng X, Chen W, Xiao L, Gu F, Huang J, Tsao BP, Sun L (2017) Artesunate inhibits type I interferon-induced production of macrophage migration inhibitory factor in patients with systemic lupus erythematosus. Lupus 26:62–72

    Article  CAS  PubMed  Google Scholar 

  • French MD, Churcher TS, Gambhir M, Fenwick A, Webster JP, Kabatereine NB, Basáñez M-G (2010) Observed reductions in Schistosoma mansoni transmission from large-scale administration of praziquantel in Uganda: a mathematical modelling study. PLoS Negl Trop Dis 4:e897

    Article  PubMed  PubMed Central  Google Scholar 

  • Fröhlich T et al. (2017a) Synthesis of novel hybrids of quinazoline and artemisinin with high activities against Plasmodium falciparum, human cytomegalovirus, and leukemia cells ACS omega 2:2422

  • Fröhlich T, Reiter C, Ibrahim MM, Beutel J, Hutterer C, Zeitträger I, Bahsi H, Leidenberger M, Friedrich O, Kappes B, Efferth T, Marschall M, Tsogoeva SB (2017b) Synthesis of novel hybrids of Quinazoline and artemisinin with high activities against Plasmodium falciparum. Human Cytomegalovirus, and Leukemia Cells ACS Omega 2:2422–2431

    Article  PubMed  CAS  Google Scholar 

  • Greenshields AL, Shepherd TG, Hoskin DW (2017) Contribution of reactive oxygen species to ovarian cancer cell growth arrest and killing by the anti-malarial drug artesunate. Mol Carcinog 56:75–93

    Article  CAS  PubMed  Google Scholar 

  • Guo Z (2016) Artemisinin anti-malarial drugs in China. Acta Pharm Sin B 6:115–124

    Article  PubMed  PubMed Central  Google Scholar 

  • von Hagens C, Walter-Sack I, Goeckenjan M, Osburg J, Storch-Hagenlocher B, Sertel S, Elsässer M, Remppis BA, Edler L, Munzinger J, Efferth T, Schneeweiss A, Strowitzki T (2017) Prospective open uncontrolled phase I study to define a well-tolerated dose of oral artesunate as add-on therapy in patients with metastatic breast cancer (ARTIC M33/2). Breast Cancer Res Treat 164:359–369

    Article  CAS  Google Scholar 

  • Hahn F, Fröhlich T, Frank T, Bertzbach LD, Kohrt S, Kaufer BB, Stamminger T, Tsogoeva SB, Marschall M (2018) Artesunate-derived monomeric, dimeric and trimeric experimental drugs–their unique mechanistic basis and pronounced antiherpesviral activity. Antivir Res 152:104–110

    Article  CAS  PubMed  Google Scholar 

  • Hakacova N, Klingel K, Kandolf R, Engdahl E, Fogdell-Hahn A, Higgins T (2013) First therapeutic use of Artesunate in treatment of human herpesvirus 6B myocarditis in a child. J Clin Virol 57:157–160

    Article  PubMed  Google Scholar 

  • Han J, Wang H, Kanagarajan S, Hao M, Lundgren A, Brodelius PE (2016) Promoting artemisinin biosynthesis in Artemisia annua plants by substrate channeling. Mol Plant 9:946–948

    Article  CAS  PubMed  Google Scholar 

  • Harper C (2007) Tuberculosis, a neglected opportunity. Nat Med 13:309–312

    Article  CAS  PubMed  Google Scholar 

  • He Q, Fu X, Shi P, Liu M, Shen Q, Tang K (2017) Glandular trichome-specific expression of alcohol dehydrogenase 1 (ADH1) using a promoter-GUS fusion in Artemisia annua L plant cell. Tissue and Organ Culture (PCTOC) 130:61–72

    Article  CAS  Google Scholar 

  • Ho WE, Cheng C, Peh HY, Xu F, Tannenbaum SR, Ong CN, Wong WF (2012) Anti-malarial drug artesunate ameliorates oxidative lung damage in experimental allergic asthma. Free Radic Biol Med 53:498–507

    Article  CAS  PubMed  Google Scholar 

  • Ho WE, Peh HY, Chan TK, Wong WF (2014) Artemisinins: pharmacological actions beyond anti-malarial. Pharmacol Ther 142:126–139

    Article  CAS  PubMed  Google Scholar 

  • Hou L, Huang H (2016) Immune suppressive properties of artemisinin family drugs. Pharmacol Ther 166:123–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurtley S, Ash C, Roberts L (2010) Landscapes of Infection. In: Landscapes of infection. American Association for the Advancement of Science

  • Ikram NK, Simonsen HT (2017) A review of biotechnological artemisinin production in plants. Front Plant Sci 8:1966

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikram K, Binti NK, Beyraghdar Kashkooli A, Peramuna AV, van der Krol AR, Bouwmeester H, Simonsen HT (2017) Stable production of the antimalarial drug artemisinin in the moss Physcomitrella patens. Frontiers in bioengineering and biotechnology 5:47

    Article  Google Scholar 

  • Jana S, Iram S, Thomas J, Liekens S, Dehaen W (2017) Synthesis and anticancer activity of novel aza-artemisinin derivatives. Bioorg Med Chem 25:3671–3676

    Article  CAS  PubMed  Google Scholar 

  • Ji Y, Zhang Y-C, Pei L-B, Shi L-L, Yan J-L, Ma X-H (2011) Anti-tumor effects of dihydroartemisinin on human osteosarcoma. Mol Cell Biochem 351:99–108

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Preston S, Koehler AV, Stroehlein AJ, Chang BCH, Simpson KJ, Cowley KJ, Palmer MJ, Laleu B, Wells TNC, Jabbar A, Gasser RB (2017) Screening of the ‘stasis Box’identifies two kinase inhibitors under pharmaceutical development with activity against Haemonchus contortus. Parasit Vectors 10:323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones I, Lund A, Riveau G, Jouanard N, Ndione RA, Sokolow SH, De Leo GA (2018) Ecological control of schistosomiasis in sub-Saharan Africa: restoration of predator-prey dynamics to reduce transmission ecology and evolution of infectious disease: pathogen control and public health management in low-income countries:236

  • Ju R-J et al (2018) Octreotide-modified liposomes containing daunorubicin and dihydroartemisinin for treatment of invasive breast cancer artificial cells, nanomedicine, and biotechnology, pp 1–13

    Google Scholar 

  • Kadambari S, Atkinson C, Luck S, Macartney M, Conibear T, Harrison I, Booth C, Sharland M, Griffiths PD (2017) Characterising variation in five genetic loci of cytomegalovirus during treatment for congenital infection. J Med Virol 89:502–507

    Article  CAS  PubMed  Google Scholar 

  • Kaptein SJ et al (2006) The anti-malaria drug artesunate inhibits replication of cytomegalovirus in vitro and in vivo. Antivir Res 69:60–69

    Article  CAS  PubMed  Google Scholar 

  • Kar Han Lau P, Woods ML, Kanneyalal Ratanjee S, Tharayil John G (2011) Artesunate is ineffective in controlling valganciclovir-resistant cytomegalovirus infection. Clinical Infectious Diseases 52:279–279

    Article  Google Scholar 

  • Kayser O, Ryden A, Bouwmeester H, Spira CR, Osada H, Muranaka T (2011) The molecular cloning of dihydroartemisinic aldehyde reductase and its implication in artemisinin biosynthesis in Artemisia annua. Planta Med 77:SL28

    Google Scholar 

  • Keiser J, N’Guessan NA, Adoubryn KD, Silué KD, Vounatsou P, Hatz C, Utzinger J, N’Goran EK (2010) Efficacy and safety of mefloquine, artesunate, mefloquine-artesunate, and praziquantel against Schistosoma haematobium: randomized, exploratory open-label trial. Clin Infect Dis 50:1205–1213

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Kang SH, Kang BS (2016) Therapeutic effects of dihydroartemisinin and transferrin against glioblastoma. Nutr Res Pract 10:393–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konstat-Korzenny E, Ascencio-Aragón JA, Niezen-Lugo S, Vázquez-López R (2018) Artemisinin and its synthetic derivatives as a. Possible Therapy for Cancer Medical Sciences 6:19

    Google Scholar 

  • Krishna S, Ganapathi S, Ster IC, Saeed MEM, Cowan M, Finlayson C, Kovacsevics H, Jansen H, Kremsner PG, Efferth T, Kumar D (2015) A randomised, double blind, placebo-controlled pilot study of oral artesunate therapy for colorectal cancer. EBioMedicine 2:82–90

    Article  PubMed  Google Scholar 

  • Krungkrai J, Krungkrai SR (2016) Antimalarial qinghaosu/artemisinin: the therapy worthy of a Nobel prize. Asian Pac J Trop Biomed 6:371–375

    Article  Google Scholar 

  • Kumari K, Keshari S, Sengupta D, Sabat SC, Mishra SK (2017) Transcriptome analysis of genes associated with breast cancer cell motility in response to artemisinin treatment. BMC Cancer 17:858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • del Villar LP, Burguillo FJ, López-Abán J, Muro A (2012) Systematic review and meta-analysis of artemisinin based therapies for the treatment and prevention of schistosomiasis. PLoS One 7:e45867

    Article  CAS  Google Scholar 

  • Lai HC, Singh NP, Sasaki T (2013) Development of artemisinin compounds for cancer treatment. Investig New Drugs 31:230–246

    Article  CAS  Google Scholar 

  • Lalloo DG, Shingadia D, Bell DJ, Beeching NJ, Whitty CJ, Chiodini PL (2016) UK malaria treatment guidelines 2016. J Infect 72:635–649

    Article  PubMed  PubMed Central  Google Scholar 

  • Laxminarayan R, Over M, Smith DL (2006) Will a global subsidy of new antimalarials delay the emergence of resistance and save lives? Health Aff 25:325–336

    Article  Google Scholar 

  • Leistikow RL, Morton RA, Bartek IL, Frimpong I, Wagner K, Voskuil MI (2010) The mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy. J Bacteriol 192:1662–1670

    Article  CAS  PubMed  Google Scholar 

  • Leto I, Coronnello M, Righeschi C, Bergonzi MC, Mini E, Bilia AR (2016) Enhanced efficacy of artemisinin loaded in transferrin-conjugated liposomes versus stealth liposomes against HCT-8 Colon Cancer cells. ChemMedChem 11:1745–1751

    Article  CAS  PubMed  Google Scholar 

  • Li Y (2012) Qinghaosu (artemisinin): chemistry and pharmacology. Acta Pharmacol Sin 33:1141–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Li TT, Zhang XH, Hou LF, Yang XQ, Zhu FH, Tang W, Zuo JP (2013a) Artemisinin analogue SM934 ameliorates murine experimental autoimmune encephalomyelitis through enhancing the expansion and functions of regulatory T cell. PLoS One 8:e74108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Wang S, Wang Y, Zhou C, Chen G, Shen W, Li C, Lin W, Lin S, Huang H, Liu P, Shen X (2013b) Inhibitory effect of the antimalarial agent artesunate on collagen-induced arthritis in rats through nuclear factor kappa B and mitogen-activated protein kinase signaling pathway. Transl Res 161:89–98

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Li Q, Wu J, Wang M, Yu J (2016) Artemisinin and its derivatives as a repurposing anticancer agent: what else do we need to do. Molecules 21:1331

    Article  PubMed Central  CAS  Google Scholar 

  • Li X, Gu S, Sun D, Dai H, Chen H, Zhang Z (2018) The selectivity of artemisinin-based drugs on human lung normal and cancer cells. Environ Toxicol Pharmacol 57:86–94

    Article  CAS  PubMed  Google Scholar 

  • Liang Y-J, Luo J, Yuan Q, Zheng D, Liu YP, Shi L, Zhou Y, Chen AL, Ren YY, Sun KY, Sun Y, Wang Y, Zhang ZS (2011) New insight into the antifibrotic effects of praziquantel on mice in infection with Schistosoma japonicum. PLoS One 6:e20247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C-x (2017) Discovery and development of artemisinin and related compounds. Chinese Herbal Medicines 9:101–114

    Article  Google Scholar 

  • Liu L, Zuo LF, Zuo J, Wang J (2015) Artesunate induces apoptosis and inhibits growth of Eca109 and Ec9706 human esophageal cancer cell lines in vitro and in vivo. Mol Med Rep 12:1465–1472

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Shi P, Fu X, Brodelius PE, Shen Q, Jiang W, He Q, Tang K (2016) Characterization of a trichome-specific promoter of the aldehyde dehydrogenase 1 (ALDH1) gene in Artemisia annua. Plant Cell, Tissue and Organ Culture (PCTOC) 126:469–480

    Article  CAS  Google Scholar 

  • Liu L-x, Li-li J, Qiong C, Xiao-lin F (2017) Recent advances in the synthesis of Antischistosomal drugs and. Agents Mini reviews in medicinal chemistry 17:467–484

    Article  PubMed  CAS  Google Scholar 

  • Liu R, Miller PA, Vakulenko SB, Stewart NK, Boggess WC, Miller MJ (2018) A synthetic dual drug Sideromycin induces gram-negative Bacteria to commit suicide with a gram-positive antibiotic. J Med Chem 61:3845–3854

    Article  CAS  PubMed  Google Scholar 

  • Loop T, Pahl H (2003) Activators and target genes of Rel/NF-кB transcription factors. In: Nuclear factor кB. Springer, pp 1–48

  • Lovis L, Mak TK, Phongluxa K, Ayé Soukhathammavong P, Vonghachack Y, Keiser J, Vounatsou P, Tanner M, Hatz C, Utzinger J, Odermatt P, Akkhavong K (2012) Efficacy of praziquantel against Schistosoma mekongi and Opisthorchis viverrini: a randomized, single-blinded dose-comparison trial. PLoS Negl Trop Dis 6:e1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J, Zhu W, Tang Y, Cao H, Zhou Y, Ji R, Zhou X, Lu Z, Yang H, Zhang S, Cao J (2014) Artemisinin derivative artesunate induces radiosensitivity in cervical cancer cells in vitro and in vivo. Radiat Oncol 9:84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Makarov V et al. (2009) Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis science

    Google Scholar 

  • Mandara CI et al (2018) High efficacy of artemether–lumefantrine and dihydroartemisinin–piperaquine for the treatment of uncomplicated falciparum malaria in Muheza and Kigoma districts. Tanzania Malaria journal 17:261

    Article  PubMed  Google Scholar 

  • Maxmen A (2016) Busting the billion-dollar myth: how to slash the cost of drug development. Nature 536:388–390

    Article  CAS  PubMed  Google Scholar 

  • McCoy A, Lissenden N, Morton A, Worrall E (2017) Towards an economics policy framework to combat malaria, in an era of insecticide resistance

  • Meskill JMM (2017) A Chinese Pioneer family: the Lins of Wu-feng, Taiwan, 1729–1895 vol 4941. Princeton University Press,

  • Miller LH, Su X (2011) Artemisinin: discovery from the Chinese herbal garden. Cell 146:855–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MJ, Walz AJ, Zhu H, Wu C, Moraski G, Möllmann U, Tristani EM, Crumbliss AL, Ferdig MT, Checkley L, Edwards RL, Boshoff HI (2011) Design, synthesis, and study of a mycobactin− artemisinin conjugate that has selective and potent activity against tuberculosis and malaria. J Am Chem Soc 133:2076–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morere L et al (2015) Ex vivo model of congenital cytomegalovirus infection and new combination therapies. Placenta 36:41–47

    Article  CAS  PubMed  Google Scholar 

  • Morris CA, Duparc S, Borghini-Fuhrer I, Jung D, Shin C-S, Fleckenstein L (2011) Review of the clinical pharmacokinetics of artesunate and its active metabolite dihydroartemisinin following intravenous, intramuscular, oral or rectal administration. Malar J 10:263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrissey C, Gallis B, Solazzi JW, Kim BJ, Gulati R, Vakar-Lopez F, Goodlett DR, Vessella RL, Sasaki T (2010) Effect of artemisinin derivatives on apoptosis and cell cycle in prostate cancer cells. Anti-Cancer Drugs 21:423–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakase I, Lai H, Singh NP, Sasaki T (2008) Anticancer properties of artemisinin derivatives and their targeted delivery by transferrin conjugation. Int J Pharm 354:28–33

    Article  CAS  PubMed  Google Scholar 

  • Nakase I, Gallis B, Takatani-Nakase T, Oh S, Lacoste E, Singh NP, Goodlett DR, Tanaka S, Futaki S, Lai H, Sasaki T (2009) Transferrin receptor-dependent cytotoxicity of artemisinin–transferrin conjugates on prostate cancer cells and induction of apoptosis. Cancer Lett 274:290–298

    Article  CAS  PubMed  Google Scholar 

  • Nondo RSO, Moshi MJ, Erasto P, Masimba PJ, Machumi F, Kidukuli AW, Heydenreich M, Zofou D (2017) Anti-plasmodial activity of Norcaesalpin D and extracts of four medicinal plants used traditionally for treatment of malaria. BMC Complement Altern Med 17:167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olofsson L, Engström A, Lundgren A, Brodelius PE (2011) Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L. BMC Plant Biol 11:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Organization WH (2011) Global tuberculosis control: WHO report 2011

  • Organization WH (2016) World health statistics 2016: monitoring health for the SDGs sustainable development goals. World Health Organization

  • Pagan JD, Kitaoka M, Anthony RM (2018) Engineered sialylation of pathogenic antibodies in vivo attenuates autoimmune disease. Cell 172:564–577 e513

    Article  CAS  PubMed  Google Scholar 

  • Park J, Lai HC, Singh M, Sasaki T, Singh NP (2014) Development of a dihydroartemisinin-resistant Molt-4 leukemia cell line. Anticancer Res 34:2807–2810

    CAS  PubMed  Google Scholar 

  • Pérez dVL, Burguillo F, Lopez-Aban J, Muro A (2012) Systematic review and meta-analysis of artemisinin based therapies for the treatment and prevention of schistosomiasis

    Google Scholar 

  • Poespoprodjo JR, Fobia W, Kenangalem E, Lampah DA, Sugiarto P, Tjitra E, Anstey NM, Price RN (2014) Dihydroartemisinin-piperaquine treatment of multidrug resistant falciparum and vivax malaria in pregnancy. PLoS One 9:e84976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poravuth Y, Socheat D, Rueangweerayut R, Uthaisin C, Pyae Phyo A, Valecha N, Rao BHK, Tjitra E, Purnama A, Borghini-Fuhrer I, Duparc S, Shin CS, Fleckenstein L (2011) Pyronaridine-artesunate versus chloroquine in patients with acute Plasmodium vivax malaria: a randomized, double-blind, non-inferiority trial. PLoS One 6:e14501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Premji ZG (2009) Coartem®: the journey to the clinic Malaria journal, vol 8, p S3

    Google Scholar 

  • Qi F et al (2013) Traditional Chinese medicine and related active compounds: a review of their role on hepatitis B virus infection. Drug discoveries & therapeutics 7:212–224

    Article  CAS  Google Scholar 

  • Ramacher M, Umansky V, Efferth T (2009) Effect of artesunate on immune cells in ret-transgenic mouse melanoma model. Anti-Cancer Drugs 20:910–917

    Article  CAS  PubMed  Google Scholar 

  • Rojas Vargas JA, López AG, Froeyen M (2016) Molecular Docking Studies of 1, 2, 4, 5-tetrasubstituted Imidazoles with Different Protein Targets of Mycobacterium tuberculosis Biomirror 7

  • Rosales-Mendoza S, Nieto-Gómez R, Angulo C (2017) A perspective on the development of plant-made vaccines in the fight against Ebola virus. Front Immunol 8:252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ross AG, Chau TN, Inobaya MT, Olveda RM, Li Y, Harn DA (2017) A new global strategy for the elimination of schistosomiasis. In: A new global strategy for the elimination of schistosomiasis. Elsevier

  • Sayce AC, Alonzi DS, Killingbeck SS, Tyrrell BE, Hill ML, Caputo AT, Iwaki R, Kinami K, Ide D, Kiappes JL, Beatty PR, Kato A, Harris E, Dwek RA, Miller JL, Zitzmann N (2016) Iminosugars inhibit dengue virus production via inhibition of ER alpha-glucosidases—not glycolipid processing enzymes. PLoS Negl Trop Dis 10:e0004524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schnepf N, Corvo J, Sanson-Le Pors M-J, Mazeron M-C (2011) Antiviral activity of ganciclovir and artesunate towards human cytomegalovirus in astrocytoma cells. Antivir Res 89:186–188

    Article  CAS  PubMed  Google Scholar 

  • Schreiber A, Härter G, Schubert A, Bunjes D, Mertens T, Michel D (2009) Antiviral treatment of cytomegalovirus infection and resistant strains. Expert Opin Pharmacother 10:191–209

    Article  CAS  PubMed  Google Scholar 

  • Schwartz DM, Bonelli M, Gadina M, O'shea JJ (2016) Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol 12:25–36

    Article  CAS  PubMed  Google Scholar 

  • Shayo A, Buza J, Ishengoma DS (2015) Monitoring of efficacy and safety of artemisinin-based anti-malarials for treatment of uncomplicated malaria: a review of evidence of implementation of anti-malarial therapeutic efficacy trials in Tanzania. Malar J 14:135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi JQ et al. (2013) Antimalarial Drug Artemisinin Extenuates Amyloidogenesis and Neuroinflammation in APP swe/PS 1dE9 Transgenic Mice via Inhibition of Nuclear Factor-κ B and NLRP 3 Inflammasome Activation CNS neuroscience & therapeutics 19:262–268

  • Shuhua X, Tanner M, N’Goran EK, Utzinger J, Chollet J, Bergquist R, Minggang C, Jiang Z (2002) Recent investigations of artemether, a novel agent for the prevention of schistosomiasis japonica, mansoni and haematobia. Acta Trop 82:175–181

    Article  Google Scholar 

  • Simonsen HT, Weitzel C, Christensen SB (2013) Guaianolide sesquiterpenoids: pharmacology and biosynthesis. In: Natural products. Springer, pp 3069–3098

  • Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, Mbogo CM, Hemingway J, Patil AP, Temperley WH, Gething PW, Kabaria CW, Burkot TR, Harbach RE, Hay SI (2012) A global map of dominant malaria vectors. Parasit Vectors 5:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Skrahina A et al (2011) Alarming levels of drug-resistant tuberculosis in Belarus: results of a survey in Minsk. Eur Respir J:erj01454–erj02011

  • Stebbins RC, Emch M, Meshnick SR (2018) The effectiveness of community bed net use on Malaria Parasitemia among children less than 5 years old in Liberia

  • Tambo E, Ai L, Zhou X, Chen JH, Hu W, Bergquist R, Guo JG, Utzinger J, Tanner M, Zhou XN (2014) Surveillance-response systems: the key to elimination of tropical diseases. Infectious diseases of poverty 3:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Teoh KH, Polichuk DR, Reed DW, Covello PS (2009) Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua. Botany 87:635–642

    Article  CAS  Google Scholar 

  • Thanaketpaisarn O, Waiwut P, Sakurai H, Saiki I (2011) Artesunate enhances TRAIL-induced apoptosis in human cervical carcinoma cells through inhibition of the NF-κB and PI3K/Akt signaling pathways. Int J Oncol 39:279–285

    CAS  PubMed  Google Scholar 

  • Tilaoui M, Mouse HA, Jaafari A, Zyad A (2014) Differential effect of artemisinin against cancer cell lines. Natural products and bioprospecting 4:189–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu Y (2011) The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med 17:1217–1220

    Article  CAS  PubMed  Google Scholar 

  • Tu Y (2016) Artemisinin—a gift from traditional Chinese medicine to the world (nobel lecture). Angew Chem Int Ed 55:10210–10226

    Article  CAS  Google Scholar 

  • Utzinger J et al (2009) Schistosomiasis and neglected tropical diseases: towards integrated and sustainable control and a word of caution. Parasitology 136:1859–1874

    Article  CAS  PubMed  Google Scholar 

  • Vale N, Gouveia MJ, Rinaldi G, Brindley PJ, Gärtner F, da Costa JMC (2017) Praziquantel for schistosomiasis, single drug revisited metabolism, mode of action and resistance antimicrobial agents and chemotherapy:AAC, pp 02582–02516

    Google Scholar 

  • Van Huijsduijnen RH et al (2013) Anticancer properties of distinct antimalarial drug classes. PLoS One 8:e82962

    Article  CAS  Google Scholar 

  • Wang JX et al (2008) The new water-soluble artemisinin derivative SM905 ameliorates collagen-induced arthritis by suppression of inflammatory and Th17 responses. Br J Pharmacol 153:1303–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J-x, L-f H, YAng Y, TAng W, Li Y, J-p Z (2009) SM905, an artemisinin derivative, inhibited NO and pro-inflammatory cytokine production by suppressing MAPK and NF-κB pathways in RAW 264.7 macrophages. Acta Pharmacol Sin 30:1428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X-Q, Liu HL, Wang GB, Wu PF, Yan T, Xie J, Tang Y, Sun LK, Li C (2011a) Effect of artesunate on endotoxin-induced uveitis in rats. Invest Ophthalmol Vis Sci 52:916–919

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yang K, Jing F, Li M, Deng T, Huang R, Wang B, Wang G, Sun X, Tang KX (2011b) Cloning and characterization of trichome-specific promoter of cpr71av1 gene involved in artemisinin biosynthesis in Artemisia annua L. Mol Biol 45:751–758

    Article  CAS  Google Scholar 

  • Wang J, Zhang CJ, Chia WN, Loh CCY, Li Z, Lee YM, He Y, Yuan LX, Lim TK, Liu M, Liew CX, Lee YQ, Zhang J, Lu N, Lim CT, Hua ZC, Liu B, Shen HM, Tan KSW, Lin Q (2015) Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat Commun 6:10111

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Kashkooli AB, Sallets A, Ting HM, de Ruijter NCA, Olofsson L, Brodelius P, Pottier M, Boutry M, Bouwmeester H, van der Krol AR (2016) Transient production of artemisinin in Nicotiana benthamiana is boosted by a specific lipid transfer protein from a. annua. Metab Eng 38:159–169

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Xu C, Lun Z-R, Meshnick SR (2017a) Unpacking ‘artemisinin resistance. Trends Pharmacol Sci 38:506–511

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhang J, Shi Y, Xu C, Zhang C, Wong YK, Lee YM, Krishna S, He Y, Lim TK, Sim W, Hua ZC, Shen HM, Lin Q (2017b) Mechanistic investigation of the specific anticancer property of artemisinin and its combination with aminolevulinic acid for enhanced anticolorectal cancer activity. ACS central science 3:743–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei J, Zhang L, Ren L, Zhang J, Liu J, Duan J, Yu Y, Li Y, Peng C, Zhou X, Sun Z (2017) Endosulfan induces cell dysfunction through cycle arrest resulting from DNA damage and DNA damage response signaling pathways. Sci Total Environ 589:97–106

    Article  CAS  PubMed  Google Scholar 

  • Weifeng T, Feng S, Xiangji L, Changqing S, Zhiquan Q, Huazhong Z, Peining Y, Yong Y, Mengchao W, Xiaoqing J, Wan-yee L (2011) Artemisinin inhibits in vitro and in vivo invasion and metastasis of human hepatocellular carcinoma cells. Phytomedicine 18:158–162

    Article  PubMed  CAS  Google Scholar 

  • Wen W, Yu R (2011) Artemisinin biosynthesis and its regulatory enzymes: Progress and perspective. Pharmacogn Rev 5:189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wencewicz TA, Miller MJ (2017) Sideromycins as pathogen-targeted antibiotics

  • White N, Pukrittayakamee S, Hien T, Faiz M, O a M, Dondorp AM (2013) Malaria Lancet 6736:13

    Google Scholar 

  • White N, Pukrittayakamee S, Hien T, Faiz M, Mokuolu O, Malaria DA (2014) Malaria. Lancet [Internet] 383(9918):723–735

    Article  Google Scholar 

  • Wilson ME, Kantele A, Jokiranta TS (2011) Review of cases with the emerging fifth human malaria parasite. Plasmodium knowlesi Clinical infectious diseases 52:1356–1362

    Article  Google Scholar 

  • Wohlfarth C, Efferth T (2009) Natural products as promising drug candidates for the treatment of hepatitis B and C. Acta Pharmacol Sin 30:25–30

    Article  CAS  PubMed  Google Scholar 

  • Wong YK, Xu C, Kalesh KA, He Y, Lin Q, Wong WSF, Shen HM, Wang J (2017) Artemisinin as an anticancer drug: recent advances in target profiling and mechanisms of action. Med Res Rev 37:1492–1517

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Zhang W, Shi X, An P, Sun W, Wang Z (2010) Therapeutic effect of artemisinin on lupus nephritis mice and its mechanisms. Acta Biochim Biophys Sin 42:916–923

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Hu B, Zhou X, Zhou C, Meng J, Yang Y, Zhao X, Shi Z, Yan S (2018) Artemether attenuates LPS-induced inflammatory bone loss by inhibiting osteoclastogenesis and bone resorption via suppression of MAPK signaling pathway. Cell Death Dis 9

  • Yakasai AM et al. (2015) Adherence to artemisinin-based combination therapy for the treatment of uncomplicated malaria: a systematic review and meta-analysis Journal of tropical medicine 2015

  • YANG L, ZHANG D (2017) Summary of dihydroartemisinin and its application for the treatment of lupus erythematosus. Chin Sci Bull 62:2007–2012

    Article  Google Scholar 

  • Yang Z, Ding J, Yang C, Gao Y, Li X, Chen X, Peng Y, Fang J, Xiao S (2012) Immunomodulatory and anti-inflammatory properties of artesunate in experimental colitis. Curr Med Chem 19:4541–4551

    Article  CAS  PubMed  Google Scholar 

  • Yi P, Park J-S, Melton DA, Huang KC (2017) NF-κB was discovered 30 years ago as a rapidly inducible transcription factor. Since that time, it has been found to have a broad role in gene induction in diverse cellular responses, particularly throughout the immune system. Here, we summarize elaborate regulatory pathways involving this transcription factor and use recent discoveries in human genetic diseases to place specific proteins within their. Cell 168:1–2

    Article  CAS  Google Scholar 

  • Zhang CJ, Wang J, Zhang J, Lee YM, Feng G, Lim TK, Shen HM, Lin Q, Liu B (2016) Mechanism-guided design and synthesis of a mitochondria-targeting artemisinin analogue with enhanced anticancer activity. Angew Chem Int Ed 55:13770–13774

    Article  CAS  Google Scholar 

  • Zhang S, Shi L, Ma H, Li H, Li Y, Lu Y, Wang Q, Li W (2017) Dihydroartemisinin induces apoptosis in human gastric cancer cell line BGC-823 through activation of JNK1/2 and p38 MAPK signaling pathways. Journal of Receptors and Signal Transduction 37:174–180

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Sun X, Wang L, Wong YK, Lee YM, Zhou C, Wu G, Zhao T, Yang L, Lu L, Zhong J, Huang D, Wang J (2018) Artesunate-induced mitophagy alters cellular redox status. Redox Biol 19:263–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng H, Colvin CJ, Johnson BK, Kirchhoff PD, Wilson M, Jorgensen-Muga K, Larsen SD, Abramovitch RB (2017) Inhibitors of mycobacterium tuberculosis DosRST signaling and persistence. Nat Chem Biol 13:218–225

    Article  CAS  PubMed  Google Scholar 

  • Zhou H-J, Zhang J-L, Li A, Wang Z, Lou X-E (2010) Dihydroartemisinin improves the efficiency of chemotherapeutics in lung carcinomas in vivo and inhibits murine Lewis lung carcinoma cell line growth in vitro. Cancer Chemother Pharmacol 66:21–29

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Shanghai Jiao Tong University, Shanghai 200240, China, for providing literature facilities. We are also thankful to the anonymous reviewers for their valuable comments. We would also like to thank Dr. Shujaul Mulk Khan of Quaid-i-Azam University Islamabad, Pakistan for his guidance and checking plagiarism in the first draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kexuan Tang.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest to claim.

Additional information

Communicated by: Yuval Cohen

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed-ur-Rahman, Khalid, M., Kayani, SI. et al. Biological Activities of Artemisinins Beyond Anti-Malarial: a Review. Tropical Plant Biol. 12, 231–243 (2019). https://doi.org/10.1007/s12042-019-09228-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-019-09228-0

Keywords

Navigation