Skip to main content

Advertisement

Log in

Different Molecular Mechanisms Account for Drought Tolerance in Coffea canephora var. Conilon

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

The effects of water deficit on photochemical parameters and expression of several candidate genes were investigated in drought-tolerant clone 73 of Coffea canephora submitted to slowly imposed water limitation. Under irrigation, this clone showed low values of stomatal conductance (g s ) and of CO2 assimilation rates (A) suggesting that it had a great efficiency in controlling stomatal closure and transpiration. After water withdrawal, this clone reached a −3.0 MPa after 15 days without irrigation and showed a slow decrease in the pre-dawn leaf water potential. Under drought, the suppression of A was accompanied by maintenance of photochemical quenching (q P) and internal to ambient CO2 concentration (Ci/Ca) ratios as well as by a decrease of non-photochemical quenching (q N). This is confirmed by the transport rate/CO2 assimilation (ETR/A) rates that suggested the participation of an alternative electron sink protecting the photosynthetic apparatus against photoinhibition. At the transcriptomic level, high up-regulation of genes encoding for a dehydrin (CcDH3), an ascorbate peroxidase (CcAPX1), a prephenate-dehydrogenase like protein (CcPDH1) and a non-symbiotic haemoglobin (CcNSH1) was also observed upon drought suggesting a strong induction of antioxidant and osmoprotection systems in this clone. High expression levels of gene-encoding ABA receptors (CcPYL3 and CcPYL7) under water limitation were also observed suggesting the involvement of the ABA signaling pathway in response to drought. All these results where compared to those previously obtained for drought-tolerant clones 14 and 120. Our results demonstrated the existence of different mechanisms amongst the drought-tolerant coffee clones regarding water deficit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CG:

Candidate gene

qPCR:

Quantitative polymerase chain reaction

References

  • Assad ED, Pinto HS, Zullo J Jr, Ávila AMH (2004) Impacto das mudanças climáticas no zoneamento agroclimático do café no Brasil. Pesqui Agrop Bras 39:1057–1064

    Article  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  PubMed  CAS  Google Scholar 

  • Barsalobres-Cavallari CF, Severino FE, Maluf MP, Maia IG (2009) Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Mol Biol 10:1

    Article  PubMed  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water stress tolerance in plants. Trends Biotechnol 14:89–97

    Article  CAS  Google Scholar 

  • Chan Z, Grumet R, Loescher W (2011) Global gene expression analysis of transgenic, mannitol-producing, and salt-tolerant Arabidopsis thaliana indicates widespread changes in abiotic and biotic stress-related genes. J Exp Bot 62:4787–4803

    Article  PubMed  CAS  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  • DaMatta FM, Ramalho JC (2006) Impact of drought and temperature stress on coffee physiology and production: a review. Braz J Plant Physiol 18:55–81

    Article  CAS  Google Scholar 

  • DaMatta FM, Chaves ARM, Pinheiro HA, Ducatti C, Loureiro ME (2003) Drought tolerance of two field-grown clones of Coffea canephora. Plant Sci 164:111–117

    Article  CAS  Google Scholar 

  • DaMatta FM, Grandis A, Arenque BC, Buckeridge MS (2010) Impacts of climate changes on crop physiology and food quality. Food Res Int 43:1814–1823

    Article  Google Scholar 

  • Dordas C (2009) Non symbiotic hemoglobins and stress tolerance in plants. Plant Sci 176:433–440

    Article  CAS  Google Scholar 

  • Ferrão RG, Fonseca AFA, Silveira JSM, Ferrão MAG, Bragança SM (2000) EMCAPA 8141 - Robustão Capixaba, variedade clonal de café conilon tolerante à seca, desenvolvida para o estado do Espírito Santo. Rev Ceres 47:555–559

    Google Scholar 

  • Ferreira DF (2011) Sisvar: a computer statistical analysis system. Ciência Agrotech 35:1039–1042

    Google Scholar 

  • Fortunato A, Lidon FC, Batista-Santos P, Leitão AE, Pais IP, Ribeiro AI, Ramalho JC (2010) Biochemical and molecular characterization of the antioxidative system of Coffea sp. under cold conditions in genotypes with contrasting tolerance. J Plant Physiol 167:333–342

    Article  PubMed  CAS  Google Scholar 

  • Freire LP, Marraccini P, Rodrigues GC, Andrade AC (2013) Análise da expressão do gene da manose 6 fosfato redutase em cafeeiros submetidos ao déficit hídrico no campo. Coffee Sci 8:17–23

    Google Scholar 

  • Grisi FA, Alves JD, de Castro EM, de Oliveira C, Biagiotti G, de Melo LA (2008) Avaliações anatômicas foliares em mudas de café ‘Catuaí’ e ‘Siriema’ submetidas ao estresse hídrico. Ciênc Agrotech 32:1730–1736

    Article  Google Scholar 

  • Hauser F, Waadt R, Schroeder JI (2011) Evolution of abscisic acid synthesis and signaling mechanisms. Curr Biol 21:346–355

    Article  Google Scholar 

  • Kufa T, Burkhardt J (2011) Stomatal characteristics in Arabica coffee germplasm accessions under contrasting environments at Jimma, southwestern Ethiopia. Int J Bot 7:63–72

    Article  Google Scholar 

  • Lambot C, Crouzillat D, Aymbire FAF, Leloup V, Broun P, Pétiard V (2008) Evaluation of conilons for genetic diversity, cup quality and biochemical composition. In: Association for Science and Information on Coffee ASIC (ed) Proceedings of the 22nd International Conference on Coffee Science, Campinas, 2008

  • Lawlor DW (2002) Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and the role of ATP. Ann Bot 89:871–885

    Article  PubMed  CAS  Google Scholar 

  • Lima ALS, DaMatta FM, Pinheiro HA, Totola MR, Loureiro ME (2002) Photochemical responses and oxidative stress in two clones of Coffea canephora under water stress. Environ Exp Bot 47:239–247

    Article  CAS  Google Scholar 

  • Marraccini P, Freire LP, Alves GSC, Vieira NG, Vinecky F, Elbet S, Ramos HJO, Rodrigues GC, Montagnon C, Vieira LGE, Silva VA, Leroy T, Pot D, Andrade AC (2011) RBCS1 expression in coffee: Coffea orthologs, Coffea arabica homeologs, and expression variability between genotypes and under drought stress. BMC Plant Biol 11:85

    Article  PubMed  CAS  Google Scholar 

  • Marraccini P, Vinecky F, Alves GSC, Ramos HJO, Elbelt S, Vieira NG, Carneiro FA, Sujii PS, Alekcevetch JC, Silva VA, DaMatta FM, Ferrão MAG, Leroy T, Pot D, Vieira LGE, da Silva FR, Andrade AC (2012) Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora. J Exp Bot 63:4191–4212

    Article  PubMed  CAS  Google Scholar 

  • Mondego JMC, Vidal RO, Carazzolle MF, Tokuda EK, Parizzi LP, Costa GGL, Pereira LFP, Andrade AC, Colombo CA, Vieira LGE, Pereira GAG, for Brazilian Coffee Genome Project Consortium (2011) An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora. BMC Plant Biol 11:30

    Article  PubMed  CAS  Google Scholar 

  • Montagnon C, Leroy T (1993) Réaction à la sécheresse de jeunes caféiers Coffea canephora de Côte-d’Ivoire appartenant à différents groupes génétiques. Café Cacao Thé 37:179–190

    Google Scholar 

  • Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro HA, DaMatta FM, Chaves ARM, Fontes EPB, Loureiro ME (2004) Drought tolerance in relation to protection against oxidative stress in clones of Coffea canephora subjected to long-term drought. Plant Sci 167:1307–1314

    Article  CAS  Google Scholar 

  • Pinheiro HA, DaMatta FM, Chaves ARM, Loureiro ME, Ducatti C (2005) Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora. Ann Bot 96:101–108

    Article  PubMed  Google Scholar 

  • Praxedes SC, DaMatta FM, Loureiro ME, Ferrão MAG, Cordeiro AT (2006) Effects of long-term soil drought on photosynthesis and carbohydrate metabolism in mature robusta coffee (Coffea canephora Pierre var. kouillou) leaves. Environ Exp Bot 56:263–273

    Article  CAS  Google Scholar 

  • Ribeiro RV, Machado EC, Santos MG, Oliveira RF (2009) Photosynthesis and water relations of well-watered orange plants as affected by winter and summer conditions. Photosynthetica 47:215–222

    Article  Google Scholar 

  • Santos AB, Mazzafera P (2012) Dehydrins are highly expressed in water-stressed plants of two coffee species. Trop Plant Biol 5:218–232

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115:327–334

    Article  PubMed  CAS  Google Scholar 

  • Silva VA (2007) Caracterização fisiológica da tolerância à seca em Coffea canephora: contribuição relativa do sistema radicular e da parte aérea. Dissertation, Federal University of Viçosa (UFV)

  • Silva EA, Mazzafera P, Brunini O, Sakai E, Arruda FB, Mattoso LHC, Carvalho CRL, Pires RCM (2005) The influence of water management and environmental conditions on the chemical composition and beverage quality of coffee beans. Braz J Plant Physiol 17:229–238

    Article  Google Scholar 

  • Silva VA, Antunes WC, Guimarães BLS, Paiva RMC, Silva VF, Ferrão MAG, DaMatta FM, Loureiro ME (2010) Physiological response of Conilon coffee clone sensitive to drought grafted onto tolerant rootstock. Pesqui Agrop Bras 45:457–464

    Article  Google Scholar 

  • Silva PEM, Cavatte PC, Morais LE, Medina EF, DaMatta FM (2013) The functional divergence of biomass partitioning, carbon gain and water use in Coffea canephora in response to the water supply: implications for breeding aimed at improving drought tolerance. Environ Exp Bot 87:49–57

    Article  Google Scholar 

  • Sun L, Wang YP, Chen P, Ren J, Ji K, Li Q, Li P, Dai SJ, Leng P (2011) Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress. J Exp Bot 62:5659–5669

    Article  PubMed  CAS  Google Scholar 

  • Vieira LGE et al (2006) Brazilian coffee genome project: an EST-based genomic resource. Braz J Plant Physiol 18:95–108

    Article  CAS  Google Scholar 

  • Vinecky F, Davrieux F, Alves GSC, Mera AC, Leroy T, Bonnot F, Pot D, Rocha OC, Guerra AF, Rodrigues GC, Marraccini P, Andrade AC (2010) Effects of water stress on bean biochemical composition of Coffea arabica cv. Rubi. In: Association for Science and Information on Coffee ASIC (ed) Proceedings of the 23rd International Conference on Coffee Science, Bali, 2010

  • Von Groll U, Berger D, Altmann T (2002) The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling during Arabidopsis stomatal development. Plant Cell 14:1527–1539

    Article  Google Scholar 

  • Waller JM, Bigger M, Hillocks RJ (2007) Coffee pests, diseases and their management. CABI Pub, Wallingford

    Book  Google Scholar 

  • Wang XJ, Loh CS, Yeoh HH, Sun WQ (2002) Drying rate and dehydrin synthesis associated with abscisic acid-induced dehydration tolerance in Spathoglottis plicata orchidaceae protocorms. J Exp Bot 53:551–558

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Shang H, Liu Y, Zheng M, Wu R, Phillips J, Bartels D, Deng X (2009) A role for a cell wall localized glycine-rich protein in dehydration and rehydration of the resurrection plant Boea hygrometrica. Plant Biol 11:837–848

    Article  PubMed  CAS  Google Scholar 

  • Warpeha KM, Lateef SS, Lapik Y, Anderson M, Lee B-S, Kaufman LS (2006) G-protein-coupled receptor 1, G-protein Gα-subunit 1, and prephenate dehydratase 1 are required for blue light-induced production of phenylalanine in etiolated Arabidopsis. Plant Physiol 140:844–855

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  PubMed  CAS  Google Scholar 

  • Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X, Tan M (2007) Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol 175:36–50

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out under the project of scientific cooperation Embrapa-Cirad “Genetic determinism of drought tolerance in coffee”. The authors acknowledge the financial support from the Brazilian Coffee R&D Consortium, FINEP and INCT-café (CNPq/FAPEMIG). The authors would like to thank Drs Aymbiré Francisco Almeida da Fonseca and Romário Gava Ferrão from the INCAPER Institute for providing plant materials and are also grateful to Dr. T. Leroy for discussions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan C. Andrade.

Additional information

Communicated by: Paulo Arruda

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vieira, N.G., Carneiro, F.A., Sujii, P.S. et al. Different Molecular Mechanisms Account for Drought Tolerance in Coffea canephora var. Conilon. Tropical Plant Biol. 6, 181–190 (2013). https://doi.org/10.1007/s12042-013-9126-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-013-9126-0

Keywords

Navigation