Skip to main content

Advertisement

Log in

Sugarcane Underground Organs: Going Deep for Sustainable Production

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Sugarcane breeding has greatly advanced in recent decades, but many aspects of sugarcane physiology are still poorly understood, including the root-shoot relationships that ultimately affect yield. Traditional methods for studying root systems are imprecise due to methodological difficulties of in situ assessment and sampling; this seems especially true for the sugarcane root system. Studies on sugarcane roots lag well behind those on other crops, in part due to the large plant stature and long crop cycle. Commercial sugarcane cultivars are hybrids from crosses mostly between Saccharum officinarum and S. spontaneum made by breeders at the beginning of the last century. These hybrids have a genomic structure composed of 80% S. officinarum, 10% S. spontaneum and 10% recombinants of these two species. S. spontaneum is included in large part for the robustness of its underground organs (root and rhizome). The S. spontaneum genes controlling these characteristics may be lost during recurrent backcrosses with S. officinarum to increase sugar content and yield. Thus, ratooning ability is one of the most desired traits. Ratooning ability comes mainly from the rhizomatousness of S. spontaneum, but this trait has been diluted during the selection process so that the stubble of hybrids does not have rhizomes sensu stricto. In this review, we revisit some basic aspects of the sugarcane root system, mainly from an ecophysiological view, and point out considerations for breeders to consider in designing the architecture of a new sugarcane cultivar that can meet the need for sustainable agricultural production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

QTLs:

Quantitative Trait Loci

GHG:

Greenhouse Gas

DMA:

Dry Matter Accumulation

SOC:

Soil Organic Carbon

References

  • Ball-Coelho B, Sampaio EVSB, Tiessen H et al (1992) Root dynamics in plant and ratoon crops of sugarcane. Plant Soil 142:297–305

    Article  Google Scholar 

  • Bischoff KP, Gravois KA, Reagan TE et al (2008) Registration of ‘L79-1002’ sugarcane. J Plant Regist 2:211–217

    Article  Google Scholar 

  • Burner DM, Legendre BL (1995) Sugarcane genome amplification for the subtropics: a twenty year effort. Sugar Cane 3:5–10

    Google Scholar 

  • Canadell J, Jackson RB, Ehleringer JR et al (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595

    Article  Google Scholar 

  • Cox TS, Bender M, Picone C et al (2002) Breeding perennial grain crops. Crit Rev Plant Sci 21:59–91

    Article  Google Scholar 

  • Cuadrado A, Acevedo R, Espina MD et al (2004) Genome remodelling in three modern S. officinarum x S. spontaneum sugarcane cultivars. J Exp Bot 55:847–854

    Article  PubMed  CAS  Google Scholar 

  • D’Hont A, Grivet L, Feldmann P et al (1996) Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp) by molecular cytogenetics. Mol Gen Genet 250:405–413

    PubMed  Google Scholar 

  • D’Hont A, Souza GM, Menossi M et al (2008) Sugarcane: a major source of sweetness alcohol and bio-energy. In: Moore PH, Ming R (eds) Genomics of tropical plants. Springer

  • Dias FLF, Mazza JA, Matsuoka S (1999) Produtividade da cana-de-açúcar em relação a clima e solos da região noroeste do Estado de São Paulo. R Bras Ci Solo 23:627–634

    CAS  Google Scholar 

  • Dunckelman PH (1974) Production of true seeds from basic lines of Saccharum and related genera in new crosses at Houma, Louisiana. Proc Am Soc Sugar Cane Technol 3:40–41

    Google Scholar 

  • Eissenstat DM, Yanai RD (2002) Root life span efficiency and turnover. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots the hidden half, 3rd edn. CRC Press, Boca Raton, pp 221–238

    Google Scholar 

  • Evensen CI, Muchow RC, El-Swaify SA et al (1997) Yield accumulation in irrigated sugarcane I effect of crop age and cultivar. Agron J 89:638–646

    Article  Google Scholar 

  • Garside AL, Smith MA, Chapman LS et al (1997) The yield plateau in the Australian sugar industry: 1970–1990. In: Keating BA, Wilson JR (eds) Intensive sugarcane production meeting the challenges beyond 2000 CAB international. Wallingford, UK, pp 103–124

    Google Scholar 

  • Giamalva MJ, Clarke SJ, Stein JM (1984) Sugarcane hybrids of biomass. Biomass 6:61–68

    Article  Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31

    Article  Google Scholar 

  • Glover J (1967) The simultaneous growth of sugar-cane roots and tops in relation to soil and climate. Proc S Afr Sug Technol Ass 41:143–159

    Google Scholar 

  • Glover JD, Cox CM, Reganold JP (2007) Future farming: a return to roots? Sci Am 297:82–89

    Article  PubMed  Google Scholar 

  • Glover JD, Reganold JP, Bell LW et al (2010) Increased food and ecosystem security via perennial grains. Science 328:1638–1639

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Herandez JL, Sarath G, Stein JM, Owens V, Gedye K, Boe A (2009) A multiple species approach to biomass production from native herbaceous perennial feedstocks. In Vitro Cell Dev Biol Plant 45:267–281

    Article  Google Scholar 

  • Grivet L, Arruda P (2001) Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Biol 5:122–127

    Article  Google Scholar 

  • Hu FY, Tao DY, Sacks E et al (2003) Convergent evolution of perenniality in rice and sorghum. PNAS 100:4050–4054

    Article  PubMed  CAS  Google Scholar 

  • Irvine JE, Benda TA (1980) Sugarcane spacing II effects of spacing on the plant. Int Soc Sug Cane Technol Cong Proc 17:357–359

    Google Scholar 

  • Inman-Bamber NG (1994) Temperature and seasonal effects on canopy development and light interception of sugarcane. Field Crops Res 36:41–51

    Article  Google Scholar 

  • Jackson J (1994) Genetic relationship between attributes in sugar cane clones related to Saccharum spontaneum. Euphytica 79:101–108

    Article  Google Scholar 

  • Jakob K, Zhou F, Paterson AH (2009) Genetic improvement of C4 grasses as cellulosic biofuel feedstocks. In Vitro Cell Dev Biol Plant 45:291–305

    Article  CAS  Google Scholar 

  • Jang CS, Kamps TL, Skinner DN et al (2006) Functional classification genomic organization putatively cis-acting regulatory elements and relationship to quantitative trait loci of sorghum genes with rhizome-enriched expression. Plant Physiol 142:1148–1159

    Article  PubMed  CAS  Google Scholar 

  • Jang CS, Kamps TL, Tang H et al (2009) Evolutionary fate of rhizome-specific genes in a non-rhizomatous Sorghum genotype. Heredity 102:266–273

    Article  PubMed  CAS  Google Scholar 

  • Jannoo N, Grivet L, Seguin M et al (1999) Molecular investigation of the genetic base of sugarcane cultivars. Theor Appl Genet 99:171–184

    Article  CAS  Google Scholar 

  • Jones DL, Hinsinger P (2008) The rhizosphere: complex by design. Plant Soil 312:1–6

    Article  CAS  Google Scholar 

  • Jonhson JMF, Coleman MD, Gesh R, Jaradat A, Mitchell R, Reicosky D, Wilhelm WW (2007) Biomass-bioenergy crops in the United States: a changin paradigm. Americas J Plant Sci Biotechnol 1:1–28

    Google Scholar 

  • Kalluri UC, Keller M (2010) Bioenergy research: a new paradigm in multidisciplinary research. J R Soc Interface 7:1391–1401

    Article  PubMed  Google Scholar 

  • Kanwar RS, Sharma KK (1974) Effect of interrow spacing on tiller mortality stalk population and yield of sugarcane. Int Soc Sug Cane Technol Cong Proc 14:741–755

    Google Scholar 

  • Kumar R, Pandey S, Pandey A (2006) Plant roots and carbon sequestration. Curr Sci 91:885–889

    CAS  Google Scholar 

  • Legendre BL, Burner DM (1995) Biomass production of sugarcane cultivars and early-generation hybrids. Biomass Bioenergy 8:55–61

    Article  Google Scholar 

  • Lu YH, D’Hont A, Paulet F et al (1994) Molecular diversity and genome structure of modern sugarcane cultivars. Euphytica 78:217–226

    Article  Google Scholar 

  • Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    PubMed  CAS  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust Jour Bot 55:493–512

    Article  Google Scholar 

  • Lynch JP, Whipps JM (1990) Substrate flow in the rizosphere. Plant Soil 129:1–10

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, New York

    Google Scholar 

  • Matsumoto H (2002) Plant roots under aluminum stress: Toxicity and tolerance In: Waisel Y, Eshel A, Kafkafi U (eds) Plant Roots: the Hidden Half 3rd ed Marcel Dekker, Madison pp 821–838

  • Matsuoka S, Arruda P, Ferro J (2009) The Brazilian experience of sugarcane ethanol industry. In Vitro Cell Dev Biol Plant 45:372–381

    Article  Google Scholar 

  • Matsuoka S, Maccheroni W, Bressiani JA (2010) Bioenergy from sugarcane. In: Santos F, Borém A, Caldas C (eds) Sugarcane bioenergy sugar and alcohol. Universidade Federal de Viçosa, Brazil

    Google Scholar 

  • Meyer J (2007) Advances in field technology and environmental awareness in the South Africa sugar industry. Sug Cane Int 25:22–28

    Google Scholar 

  • Ming R, Moore PH, Wu KK et al (2006) Sugarcane Improvement through Breeding and Biotechnology. Pl Breed Rev 27:15–118

    CAS  Google Scholar 

  • Mislevy P, Martin FG, Adjei MB, Miller JD (1995) Agronomic characteristics of US 72–1153 energycane for biomass. Biomass Bioenergy 9:449–457

    Article  Google Scholar 

  • Monteith H, Banath CL (1965) The effect of soil strength on sugarcane root growth. Trop Agric (Trinidad) 42:293–296

    Google Scholar 

  • Moore PH (1987a) Anatomy and morphology. In: Heinz D (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 85–142

    Google Scholar 

  • Moore PH (1987b) Breeding for stress resistance. In: Heinz D (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 503–542

    Google Scholar 

  • Moore PH (2005) Integration of sucrose accumulation processes across hierarchical scales: towards developing an understanding of the gene-to-crop continuum. Field Crops Res 92:119–135

    Article  Google Scholar 

  • Muchow RC, Spillman MF, Wood AW et al (1994) Radiation interception and biomass accumulation in a sugarcane crop grown under irrigated tropical conditions. Aust J Agric Res 92(2–3):119–135

    Google Scholar 

  • Muchow RC, Evensen CI, Osgood RV et al (1997) Yield accumulation in irrigated sugarcane II Utilization of intercepted radiation. Agron J 89:646–652

    Article  Google Scholar 

  • Nie Z, Norton MR (2009) Stress tolerance and persistence of perennial grasses: the role of the summer dormancy trait in temperate Australia. Crop Sci 49:2405–2411

    Article  Google Scholar 

  • Norby RJ, Jackson RB (2000) Root dynamics and global change: seeking an ecosystem perspective. New Phytol 147:3–12

    Article  CAS  Google Scholar 

  • Otto R, Trivelin PCO, Franco HCJ et al (2009) Root system distribution of sugarcane as related to nitrogen fertilization evaluated by two methods: monolith and probe. Rev Bras Ciênc Solo 33:601–611

    Article  CAS  Google Scholar 

  • Pan Y-B, Burner DM, Legendre BL et al (2004) An assessment of the genetic diversity within a collection of Saccharum spontaneum L with RAPD-PCR. Gen Res Crop Evol 51:895–903

    Article  CAS  Google Scholar 

  • Passioura JB (1991) Soil structure and plant growth. Aust J Soil Res 29:717–728

    Article  Google Scholar 

  • Passioura JB (2010) Scaling up: the essence of effective agricultural research. Funct Plant Biol 37:585–591

    Article  Google Scholar 

  • Paterson AH (2009) Rhizomatousness: genes important for a weediness syndrme. In Stewart Jr CN. Weeding and Invasive Plant Genomes Wiley, pp 99–109

  • Pierret A (2008) Multi-spectral imaging of rhizobox systems: New perspectives for the observation and discrimination of rhizosphere components. Plant Soil 310:263268

    Article  Google Scholar 

  • Polomski J, Kuhn N (2002) Root research methods. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 3rd edn. Marcel Dekker, New York, pp 295–321

    Google Scholar 

  • Reich PB (2002) Root-shoot relations: Optimality in acclimation and adaptation or the emperor‟s new clothes. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots the hidden half, 3rd edn. CRC Press, Boca Raton, pp 205–220

    Google Scholar 

  • Robertson MJ, Wood AW, Muchow RC (1996) Growth of sugarcane under high input conditions in tropical Australia I Radiation use biomass accumulation and partitioning. Field Crops Res 48:11–25

    Article  Google Scholar 

  • Sainz MB (2009) Commercial cellulosic ethanol: the role of plant-expressed enzymes. In Vitro Cell Dev Biol Plant 45:314–329

    Article  CAS  Google Scholar 

  • Segal E, Kushnir T, Mualen Y et al (2008) Water uptake and hydraulics of the root hair. Vadose Zone J 7:1027–1034

    Article  Google Scholar 

  • Selvi A, Nair NV, Noyer JL et al (2005) Genomic constitucion and genetic relationship among tropical and subtropical Indian sugarcane cultivars revealed by AFLP. Crop Sci 45:1750–1757

    Article  CAS  Google Scholar 

  • Singels A, Smit MA (2002) The effect of row spacing on an irrigated plant crop of sugarcane cultivar NCo376. Proc S Afr Sug Technol Ass 76:94–105

    Google Scholar 

  • Singels A, Donaldson RA, Smit MA (2005) Improving biomass production and partitioning in sugarcane: theory and practice. Field Crops Res 92:291–303

    Article  Google Scholar 

  • Skaggs TH, Shouse PJ (2008) Roots and root function: introduction. Vadose Zone J 7:1008–1009

    Article  Google Scholar 

  • Smit MA, Singels A (2006) The response of sugarcane canopy development to water stress. Field Crops Res 98:91–97

    Article  Google Scholar 

  • Smith DM, Inman-Bamber NG, Thorburn PJ (2005) Growth and function of the sugarcane root system. Field Crops Res 92:169–183

    Article  Google Scholar 

  • Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443

    Article  PubMed  CAS  Google Scholar 

  • Tew TL (1987) New cultivars. In: Heinz D (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 559–594

    Google Scholar 

  • Tew, TL, Cobill RM (2008) Genetic improvement of sugarcane (Saccharum spp) as an energy crop In: Vermerris W (ed) Genetic improvement of bioenergy crops, Springer

  • Tulinson LG, Liu H, Silk WK et al (2008) Thermal neutron computed tomography of soil water and plant roots. Soil Sci Soc Aust J 72(5):1234–1242

    Google Scholar 

  • Vasconcelos ACM, Casagrande AA, Perecin D et al (2003) Evaluation of the sugarcane root system with different methods. Rev Bras Ciên Solo 27:849–858

    Google Scholar 

  • Yang SJ (1977) Soil physical properties and the growth of ratoon cane as influenced by mechanical harvesting. Int Soc Sug Cane Technol Cong Proc 16:835–847

    Google Scholar 

  • Yuan JS, Tiller KH, Al-Ahmad H et al (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13:421–429

    Article  PubMed  CAS  Google Scholar 

  • Waisel Y (2002) Aeroponics: a tool for root research under minimal environmental restrictions. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant Roots: the Hidden Half, 3rd edn. Marcel Dekker, New York, pp 323–331

    Google Scholar 

  • Wang L-P, Jackson PA, Lu X et al (2008) Evaluation of sugarcane x Saccharum spontaneum progeny for biomass composition and yield components. Crop Sci 48:951–961

    Article  Google Scholar 

  • Wilson J (1974) Production of sugarcane in South Africa. S Afr Sug J 58:243–245

    Google Scholar 

  • Whitmore AP, Whalley WR (2009) Physical effects of soil drying on roots and crop growth. J Exp Bot 60:2845–2857

    Article  PubMed  CAS  Google Scholar 

  • Zhou M (2005) The relationship between tiller population development parameters and cane yield of sugarcane. Int Soc Sug Cane Technol Cong Proc 25:443–451

    Google Scholar 

  • Zhu J, Zhang C, Lynch JP (2010) The utility of phenotypic plasticity for root hair length for phosphorus acquisition. Funct Plant Biol 37:313–322

    Article  Google Scholar 

  • Zobel RW (1992) Root morphology and development. J Plant Nutr 15:677–684

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sizuo Matsuoka.

Additional information

Communicated by: Paulo Arruda

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuoka, S., Garcia, A.A.F. Sugarcane Underground Organs: Going Deep for Sustainable Production. Tropical Plant Biol. 4, 22–30 (2011). https://doi.org/10.1007/s12042-011-9076-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-011-9076-3

Keywords

Navigation