Skip to main content
Log in

The Biotechnology Roadmap for Sugarcane Improvement

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Due to the strategic importance of sugarcane to Brazil, FAPESP, the main São Paulo state research funding agency, launched in 2008 the FAPESP Bioenergy Research Program (BIOEN, http://bioenfapesp.org). BIOEN aims to generate new knowledge and human resources for the improvement of the sugarcane and ethanol industry. As part of the BIOEN program, a Workshop on Sugarcane Improvement was held on March 18th and 19th 2009 in São Paulo, Brazil. The aim of the workshop was to explore present and future challenges for sugarcane improvement and its use as a sustainable bioenergy and biomaterial feedstock. The workshop was divided in four sections that represent important challenges for sugarcane improvement: a) gene discovery and sugarcane genomics, b) transgenics and controlled transgene expression, c) sugarcane physiology (photosynthesis, sucrose metabolism, and drought) and d) breeding and statistical genetics. This report summarizes the roadmap for the improvement of sugarcane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BIOEN:

FAPESP bioenergy research program

EST:

Expressed sequence tag

SUCEST:

The sugarcane EST project

SAS:

Sugarcane assembled sequences

BAC:

Bacterial artificial chromosome

TE:

Transposable element

NADP-ME:

NADP+−malic enzyme

NAD-ME:

NAD+−malic enzyme

PCK:

Phosphoenolpyruvate carboxykinase

MAS:

Marker assisted selection

SNP:

Single nucleotide polymorphism

NGS:

Next generation sequencing

QTL:

Quantitative trait loci

References

  • Aitken KS, Jackson PA, McIntyre CL (2005) A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. TAG Theor Appl Genet Theoretische und angewandte Genetik 110:789–801

    Article  CAS  Google Scholar 

  • Aitken KS, Jackson PA, McIntyre CL (2007) Construction of a genetic linkage map for Saccharum officinarum incorporating both simplex and duplex markers to increase genome coverage. Genome 50(8):742–756

    Article  PubMed  CAS  Google Scholar 

  • Aitken KS, Hermann S, Karno K, Bonnett GD, McIntyre LC, Jackson PA et al (2008) Genetic control of yield related stalk traits in sugarcane. TAG Theor Appl Genet. Theoretische und angewandte Genetik 117(7):1191–1203

    Article  Google Scholar 

  • Al-Janabi SM, Parmessur Y, Kross H, Dhayan S, Saumtally S, Ramdoyal K, Autrey LJC, Dookun-Saumtally A (2007) Identification of a major quantitative trait locus (QTL) for yellow spot (Mycovellosiella koepkei) disease resistance in sugarcane. Mol Breed 19:1–14

    Article  Google Scholar 

  • Araújo PG, Rossi M, de Jesus EM, Saccaro NL Jr, Kajihara D, Massa R, de Felix JM, Drummond RD, Falco MC, Chabregas SM, Ulian EC, Menossi M, Van Sluys MA (2005) Transcriptionally active transposable elements in recent hybrid sugarcane. Plant J 44:707–717

    Article  PubMed  CAS  Google Scholar 

  • Arencibia A, Molina P, de la Riva G, Selman-Houssein G (1995) Production of transgenic sugarcane (Saccharum officinarum L.) plants by intact cell electroporation. Plant Cell Rep 14:305–309

    Article  CAS  Google Scholar 

  • Arencibia A, Carmona E, Tellez P, Chan MT, Yu SM, Trujillo L, Oramas P (1998) An efficient protocol for sugarcane (Saccharum spp.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res 7:213–222

    Article  CAS  Google Scholar 

  • Arencibia A, Carmona E, Cornide MT, Castiglione S, O’Relly J, Cinea A, Oramas P, Sala F (1999) Somaclonal variation in insect-resistant transgenic sugarcane (Saccharum hybrid) plants produced by cell electroporation. Transgenic Res 8:349–360

    Article  CAS  Google Scholar 

  • Asnaghi C, D’Hont A, Glaszmann JC, Rott P (2001) Resistance of sugarcane cultivar R 570 to Puccinia melanocephala isolates from different geographic locations. Plant Dis 85:282–286

    Article  Google Scholar 

  • Batley J, Barker G, Sullivan HO, Edwards KJ, Edwards D, Victoria A et al (2003) Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data 1. Society 132:84–91

    CAS  Google Scholar 

  • Beetham PR, Kipp PB, Sawycky XL, Arnzen CJ, May GD (1999) A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc Natl Acad Sci USA 96:8774–8778

    Article  PubMed  CAS  Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  PubMed  CAS  Google Scholar 

  • Bock R (2001) Transgenic plastids in basic research and plant biotechnology. J Mol Biol 312:425–438

    Article  PubMed  CAS  Google Scholar 

  • Botha FC, Sawyer BJB, Birch RG (2001) Sucrose metabolism in the culm of transgenic sugarcane with reduced soluble acid invertase activity. In: Hogarth DM (ed) Proc Int Soc Sugar Cane Technol, Brisbane 24:588–591

  • Bower R, Birch RG (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J 2:409–416

    Article  CAS  Google Scholar 

  • Braga DPV, Arrigoni EDB, Silva-Filho MC, Ulian EC (2003) Expression of the Cry1Ab protein in genetically modified sugarcane for the control of Diatraea saccharalis (Lepidoptera: Crambidae). J New Seed 5:209–222

    Article  Google Scholar 

  • Brumbley SM, Petrasovits LA, Bonaventura PA, O’Shea MJ, Purnell MP, Nielsen LK (2003) Production of polyhydroxyalkanoates in sugarcane. Proc Int Soc Sugar Cane Technol Mol Biol Workshop, Montpellier, France 4:31

  • Bryan GT, Wu KS, Farrall L, Jia Y, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033–2045

    Article  PubMed  CAS  Google Scholar 

  • Bundock PC, Eliott FG, Ablett G, Benson AD, Casu RE, Aitken KS et al (2009) Targeted single nucleotide polymorphism (SNP) discovery in a highly polyploid plant species using 454 sequencing. Plant Biotechnol J 7(4):347–354

    Article  PubMed  CAS  Google Scholar 

  • Calsa T Jr, Figueira A (2007) Serial analysis of gene expression in sugarcane (Saccharum spp.) leaves revealed alternative C4 metabolism and putative antisense transcripts. Plant Mol Biol 63:745–762

    Article  PubMed  CAS  Google Scholar 

  • Camargo SR, Cançado GMA, Ulian EC, Menossi M (2007) Identification of genes responsive to the application of ethanol on sugarcane leaves. Plant Cell Rep 26:2119–2128

    Article  PubMed  CAS  Google Scholar 

  • Carson DL, Botha FC (2000) Preliminary analysis of expressed sequence tags for sugarcane. Crop Sci 40:1769–1779

    Article  CAS  Google Scholar 

  • Casu RE, Grof CPL, Rae AL, McIntyre CL, Dimmock CM, Manners JM (2003) Identification of a novel sugar transporter homologue strongly expressed in maturing stem vascular tissues of sugarcane by expressed sequence tag and microarray analysis. Plant Mol Biol 52:371–386

    Article  PubMed  CAS  Google Scholar 

  • Casu RE, Dimmock CM, Chapman SC, Grof CPL, McIntyre CL, Bonnett GD, Manners JM (2004) Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling. Plant Mol Biol 54:503–517

    Article  PubMed  Google Scholar 

  • Casu RE, Manners JM, Bonnett GD, Jackson PA, McIntyre CL, Dunne R, Chapman SC, Rae AL, Grof CPL (2005) Genomics approaches for the identification of genes determining important traits in sugarcane. Field Crops Res 92:137–147

    Article  Google Scholar 

  • Chen ZJ, Ni ZF (2006) Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. Bioessays 28:240–252

    Article  PubMed  Google Scholar 

  • Christin PA, Salamin N, Savolainen V, Duvall MR, Besnard G (2007) C4 photosynthesis evolved in grasses via parallel adaptive genetic changes. Curr Biol 17:1241–1247

    Article  PubMed  CAS  Google Scholar 

  • da Silva J, Sorrells ME (1996) Linkage analysis in polyploids using molecular markers. In: Jauhar P (ed) Methods of genome analysis in plants: their merits and pitfalls. CRC Press, Boca Raton

    Google Scholar 

  • Daniell H (1999) Environmentally friendly approaches to genetic engineering. In Vitro Cell De Biol Plant 35:361–368

    Article  Google Scholar 

  • Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trend Plant Sci 6:219–225

    Article  CAS  Google Scholar 

  • Daugrois JH, Grivet L, Roques D, Hoarau JY, Lombardi H, Glaszmann JC, D’Hont A (1996) A putative major gene for rust resistence linked with a RFLP marker in Sugarcane cultivar ‘R570’. Theor Appl Genet 92:1059–1064

    Article  CAS  Google Scholar 

  • De Cosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74

    Article  PubMed  Google Scholar 

  • de Souza AP, Gaspar M, da Silva EA, Ulian EC, Waclawovsky AJ, Nishiyama MY Jr, dos Santos RTMM, Souza G, Buckeridge MS (2008) Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant, Cell and Environment 31:1116–1127

    Article  PubMed  CAS  Google Scholar 

  • D’Hont A (2005) Unraveling the genome structure of polyploids using FISH and GISH, examples of sugarcane and banana. Cytogenet Genome Res 109:27–33

    Article  PubMed  CAS  Google Scholar 

  • D’Hont A, Glaszmann JC (2001) Sugarcane genome analysis with molecular markers, a first decade of research. Proc Int Soc Sugar Cane Technol 24:556–559

    Google Scholar 

  • D’Hont A, Grivet L, Feldmann P, Rao S, Berding N, Glaszmann JC (1996) Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet 250:405–413

    Article  PubMed  Google Scholar 

  • D’Hont A, Ison D, Alix K, Roux C, Glaszmann JC (1998) Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41:221–225

    Article  Google Scholar 

  • Elliott AR, Bretell RIS, Grof CPL (1998) Agrobacterium-mediatd transformation of sugarcane using GFP as a screenable marker. Aust J Plant Physiol 25:739–743

    Article  CAS  Google Scholar 

  • Elliott AR, Dugdale B, Bretell RIS, Grof CPL (1999) Green-fluorescent protein facilitates rapid in vivo detction of genetically transformed plant cells. Plant Cell Rep 18:707–714

    Article  CAS  Google Scholar 

  • Enriquez GA, Trujillo LE, Menendez C, Vazquez RI, Tiel K, Arieta J, Selman G, Hernandez L (2000) Sugarcane (Saccharum hybrid) genetic transformation mediated by Agrobacterium tumefaciens: production of transgenic plants expressing proteins with agronomic and industrial value. In: Arencibia AD (ed) Plant genetic engineering: towards the third millennium. Elsevier Science, Amsterdam pp 76–81

    Chapter  Google Scholar 

  • Enriquez-Obregon GA, Vázquez-Padrón RI, Prieto-Samsonov DL, De La Riva GA, Selman-Houssein G (1998) Herbicide resistant sugarcane (Saccharum officinarum) plants by Agrobacterium-mediated transformation. Planta 206:20–27

    Article  CAS  Google Scholar 

  • Falco MC, Tulmann Neto AT, Ulian EC (2000) Transformation and expression of a gene for herbicide resistance in a Brazilian sugarcane. Plant Cell Rep 19:1188–1194

    Article  CAS  Google Scholar 

  • Falco MC, Silva-Filho MC (2003) Expression of soybean proteinase inhibitors intransgenic sugarcane plants: effects on natural defense against Diatrae saccharalis. Plant Physiol Biochem 41:761–766

    Article  CAS  Google Scholar 

  • Finnegan J, McElroy D (1994) Transgene inactivatin: plants fight back! Nat Biotechnol 12:883–888

    Article  Google Scholar 

  • Francia E, Tacconi G, Crosatti C, Barabaschi D, Bulgarelli D, Dall’Aglio E, Val G (2005) Marker assisted selecion in crop plants. Plant Cell Tissue Organ Cult 82:317–342

    Article  CAS  Google Scholar 

  • Gallo-Meagher M, Irvine JE (1996) Herbicide resistant transgenic sugarcane plants containing the bar gene. Crop Sci 36:1367–1374

    CAS  Google Scholar 

  • Garcia AAF, Kido EA, Meza AN, Souza HMB, Pinto LR, Pastina MM, Leite CS, Da Silva JAG, Ulian EC, Figueira A, Souza AP (2006) Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases. TAG Theor Appl Genet 112:298–314

    Article  CAS  Google Scholar 

  • Gilbert RA, Gallo-Meagher M, Comstock JC, Miller JD, Jain M, Abouzid A (2005) Agronomic evaluation of sugarcane lines transformed for resistance to sugarcane mosaic virus strain E. Crop Sci 45:2060–2067

    Article  Google Scholar 

  • Gilbert RA, Glynn NC, Comstock JC, Davis MJ (2009) Agronomic performance and genetic characterization of sugarcane transformed for resistance to sugarcane yellow leaf virus. Field Crops Res 111:39–46

    Article  Google Scholar 

  • Grivet L, Arruda P (2002) Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Biol 5:122–127

    Article  PubMed  CAS  Google Scholar 

  • Groenewald JH, Groenewald S, Whittaker A, Huckett BI, Botha FC (1995) Molecular agriculture: prospects for production of alternative commodities in sugarcane through genetic engineering. Proc South African Sugar Technol 69:14–20

    Google Scholar 

  • Ha S, Moore PH, Heinz D, Kato S, Ohmido N, Fukui K (1999) Quantitative chromosome map of the polyploid Saccharum spontaneum by multicolor in situ hybridization and imaging methods. Plant Mol Biol 39:1165–1173

    Article  PubMed  CAS  Google Scholar 

  • Hemaprabha G, Govindaraj P, Balasundaram N, Singh NK (2005) Genetic diversity analysis of indian sugarcane breeding pool based on sugarcane specific STMS markers. Sugar Tech 7:9–14

    Article  Google Scholar 

  • Hoarau JY, Offman B, D’Hont A, Risterucci AM, Roques D, Glaszmann JC, Grivet L (2001) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). I. Genome mapping with AFLP markers. Theor Appl Genet 103:84–97

    Article  CAS  Google Scholar 

  • Imelfort M, Duran C, Batley J, Edwards D (2009) Discovering genetic polymorphisms in next-generation sequencing data. Plant Biotechnol J 7:312–317

    Article  PubMed  CAS  Google Scholar 

  • Ingelbrecht IL, Irvine JE, Mirkov TE (1999) Posttranscriptional gene silencing in transgenic sugarcane. Dissection Of homology-dependent virus resistance in a monocot that has a complex polyploid genome. Plant Physiol 119:1187–1198

    Article  PubMed  CAS  Google Scholar 

  • Inman-Bamber NG (2004) Sugarcane water stress criteria for irrigation and drying off. Field Crops Res 89:107–122

    Article  Google Scholar 

  • Inman-Bamber NG, Smith DM (2005) Water relations in sugarcane and response to water deficits. Field Crops Res 92:185–202

    Article  Google Scholar 

  • Inman-Bamber NG, Muchow RC, Robertson MJ (2002) Dry matter partitioning of sugarcane in Australia and South Africa. Field Crops Res 76:71–84

    Article  Google Scholar 

  • Inman-Bamber NG, Bonnett GD, Spillman MF, Hewitt ML, Jackson J (2008) Increasing sucrose accumulation in sugarcane by manipulating leaf extension and photosynthesis with irrigation. Aust J Agric Res 59:13–26

    Article  CAS  Google Scholar 

  • Inman-Bamber NG, Bonnett GD, Spillman MF, Hewitt ML, Xu J (2009) Source–sink differences in genotypes and water regimes influencing sucrose accumulation in sugarcane stalks. Crop Pasture Sci 60:316–327

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (2007) Fourth Assessment Report. Cambridge University Press

  • Jackson PA (2005) Breeding for improved sugar content in sugarcane. Field Crops Res 92:277–290

    Article  Google Scholar 

  • Jain M, Chengalrayan K, Abouzid A, Gallo M (2007) Prospecting the utility of a PMI/mannose selection system for the recovery of transgenic sugarcane (Saccharum spp. hybrid) plants. Plant Cell Rep 26(5):581–590

    Article  PubMed  CAS  Google Scholar 

  • Jannoo N, Grivet L, Chantret N, Garsmeur O, Glaszmann JC, Arruda P, D’Hont A (2007) Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome. Plant J 50:574–585

    Article  PubMed  CAS  Google Scholar 

  • Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17:388–391

    Article  PubMed  CAS  Google Scholar 

  • Joyce A, McQualter RB, Bernard MJ, Smith GR (1998a) Engineering for resistance to SCMV in sugarcane. Acta Hortic 461:385–391

    Google Scholar 

  • Joyce A, McQualtert RB, Handley JA, Dale JL, Harding RM, Smith GR (1998b) Transgenic sugarcane resistant to sugarcane mosaic virus. Proc Aust Soc Sugar Cane Technol 20:204–210

    Google Scholar 

  • Kanazin V, Talbert H, See D, Decamp P, Nevo E, Blake T (2002) Discovery and assay of single-nucleotide polymorphisms in barley (Hordeum. Plant Mol Biol 48:529–537

    Article  PubMed  CAS  Google Scholar 

  • Lakshmanan P, Geijskes RJ, Aitken KS, Grof CLP, Bonnett GD, Smith GR (2005) Sugarcane biotechnology: the challenges and opportunities. In Vitro Cell Dev Biol 41:345–363

    Article  CAS  Google Scholar 

  • Legaspi JC, Mirkov TE (2000) Evaluation of transgenic sugarcane against stalkborers. In: Allsopp PG, Suasa-Ard W (eds) Proc Int Soc Sugar Cane Technol. Sugarcane Entomology Workshop, Khon Kaen 4:68–71

  • Leibbrandt NB, Snyman SJ (2003) Stability of gene expression and agronomic performance of a transgenic herbicide-resistant sugarcane line in South Africa. Crop Sci 43:671–677

    Article  CAS  Google Scholar 

  • Lima ML, Garcia AA, Oliveira KM, Matsuoka S, Arizono H, De Souza CL Jr, De Souza AP (2002) Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp.). Theor Appl Genet 104:30–38

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Albert HH, Paull R, Moore PH (2000) Metabolic engineering of invertase activities in different subcellular compartments affects sucrose accumulation in sugarcane cells. Aust J Plant Physiol 27:1021–1030

    CAS  Google Scholar 

  • Ma HM, Schulze S, Lee S, Yang M, Mirkov E, Irvine J, Moore, Paterson A (2004) An EST survey of the sugarcane transcriptome. Theor Appl Genet 108:851–863

    Article  PubMed  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Re Plant Biol 55:289–313

    Article  CAS  Google Scholar 

  • Manickavasagam M, Ganapathi A, Anbazhagan R, Sudhakar B, Selvaraj N, Vasudevan A, Kasthurirengan S (2004) Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep 23:134–143

    Article  PubMed  CAS  Google Scholar 

  • McCormick AJ, Cramer MD, Watt DA (2006) Sink strength regulates photosynthesis in sugarcane. New Phytol 171:759–770

    Article  PubMed  CAS  Google Scholar 

  • McCormick AJ, Cramer MD, Watt DA (2008a) Regulation of photosynthesis by sugars in sugarcane leaves. J Plant Physiol 165:1817–1829

    Article  PubMed  CAS  Google Scholar 

  • McCormick AJ, Cramer MD, Watt DA (2008b) Changes in photosynthetic rates and gene expression of leaves during a source–sink perturbation in sugarcane. Ann Bot 101:89–102

    Article  PubMed  CAS  Google Scholar 

  • McIntyre CL, Jackson PA (2001) Low level of selfing found in a sample of crosses in Australian sugarcane breeding programs. Euphytica 117:245–249

    Article  Google Scholar 

  • McIntyre CL, Whan A, Croft B, Magarey R, Smith GR (2005) Identification and validation of molecular markers associated with Pachymetra root rot and brown rust resistance in sugarcane using map- and association-based approaches. Mol Breed 16:151–161

    Article  CAS  Google Scholar 

  • McIntyre CL, Jackson M, Cordeiro GM, Amouyal O, Hermann S, Aitken KS, Eliott F, Henry RJ, Casu RE, Bonnett GD (2006) The identification and characterisation of alleles of sucrose phosphate synthase gene family III in sugarcane. Mol Breed 18:39–50

    Article  CAS  Google Scholar 

  • McQualter RB, Dale JL, Harding RM, McMahon JA, Smith GR (2004a) Production and evaluation of transgenic sugarcane containing a Fiji disease virus (FDV) genome segment S9-derived synthetic resistance gene. Aust J Agric Res 55:139–145

    Article  CAS  Google Scholar 

  • McQualter RB, Chong BF, Meyer K, Van Dyk DE, O’Shea MG, Walton NJ, Viitanen PV, Brumbley SM (2004b) Initial evaluation of sugarcane as a production platform for a p-hydroxybenzoic acid. Plant Biotechnol J 2:1–13

    Article  Google Scholar 

  • Messing J (2009) Synergy of two reference genomes for the grass family. Plant Physiol 149:117–124

    Article  PubMed  CAS  Google Scholar 

  • Molinari HBC, Marur CJ, Daros E, Campos MKF, Carvalho JFRP, Bespalhok Filho JC, Pereira LFP, Vieira LGE (2007) Evaluation of the stress-inducible production of praline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plant 130:218–229

    Article  CAS  Google Scholar 

  • Moore PH (1999) Progress and development in sugarcane biotechnology. Proc Int Soc Sugar Cane Technol 23:241–258

    Google Scholar 

  • Mudge SR, Osabe K, Casu RE, Bonnet GD, Manners JM, Birch RG (2009) Efficient silencing of reporter transgenes coupled to known function promoters in sugarcane, a highly polyploidy crop species. Planta 229:549–558

    Article  PubMed  CAS  Google Scholar 

  • Nogueira FTS, Rosa E Jr, Menossi M, Ulian EC, Aruda P (2003) RNA expression profiles and data mining of sugarcane response to low temperature. Plant Physiol 132:1811–1824

    Article  PubMed  CAS  Google Scholar 

  • Nutt KA, Allsopp PG, McGhie TK, Shepherd KM, Joyce PA (1999) Transgenic sugarcane with increased resistance to canegrubs. In: Conference of the Australian Society of Sugar Cane Technologists, 1999, Townsville. Proceedings... PK Editorial Services, Townsville pp 27–30

  • Oliveira KM, Pinto LR, Marconi TG, Margarido GR, Pastina MM, Teixeira LHM, Figueira AV, Ulian EC, Garcia AAF, Souza AP (2007) Functional integrated genetic linkage map based on EST-markers for a sugarcane (Saccharum spp.) commercial cross. Mol Breed 20:189–208

    Article  CAS  Google Scholar 

  • Papini-Terzi FS, Rocha FR, Vencio RZ, Oliveira KC, Felix JdeM, Vicentini R, Rocha CdeS, Simoes AC, Ulian EC, di Mauro SM, da Silva AM, Pereira CA, Menossi M, Souza GM (2005) Transcription profiling of signal transduction-related genes in sugarcane tissues DNA. Resistente 12:27–38

    CAS  Google Scholar 

  • Papini-Terzi FS, Rocha FR, Vencio RZ, Felix JM, Branco DS, Waclawovsky AJ, Del Bem LEV, Lembke CG, Costa MDL, Nishiyama MY, Vicentini R, Vincentz MGA, Ulian EC, Menossi M, SOUZA GM (2009) Sugarcane genes associated with sucrose content. BMC Genomics 10:120

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Petrasovits LA, Purnell MP, Nielsen LK, Brumbley SM (2007) Production of polyhydroxybutyrate in sugarcane. Plant Biotechnol J 5:162–172

    Article  PubMed  CAS  Google Scholar 

  • Piperidis N, Jackson PA, D’Hont A, Besse P, Hoarau JY, Courtois B, Aitken KS, McIntyre CL (2008) Comparative genetics in sugarcane enables structured map enhancement and validation of marker-trait associations. Mol Breed 21:233–247

    Article  Google Scholar 

  • Raboin L, Oliveira KM, Lecunff L, Telismart H, Roques D, Butterfield MK, Hoarau JY, D’HOnt A (2006) Genetic mapping in sugarcane, a high polyploid, using bi-parental progeny: identification of a gene controlling stalk colour and a new rust resistance gene. TAG Theor Appl Genet 112:1382–1391

    Article  CAS  Google Scholar 

  • Raboin LM, Pauquet J, Butterfield M, D’Hont A, Glaszmann JC (2008) Analysis of genome-wide linkage disequilibrium in the highly polyploid sugarcane. Theor Appl Genet 116:701–714

    Article  PubMed  CAS  Google Scholar 

  • Ramdoyal K, Badaloo GH (2002) Prebreeding in sugarcane with an emphasis on the programme of the Mauritius Sugar Industry Research Institute. In: Engels JMM, Rao R, Brown AHD, Jackson MT (eds) Managing plant genetic diversity. CABI Publishing Group, Oxford

    Google Scholar 

  • Rangel P, Gomez L, Victoria JI, Angel F (2003) Transgenic plants of CC 84–75 resistant to the virus associated with the sugarcane yellow leaf syndrome In: SILVER JUBILEE CONGRESS, Guatemala. Proceedings of International Society of Sugar Cane Technology, Molecular Biology Workshop, Montpellier: Editorial Services, 2003, p 30

  • Ripol MI, Churchill GA, da Silva JAG, Sorrells M (1999) Statistical aspects of genetic mapping in autopolyploids. Gene 235:31–41

    Article  PubMed  CAS  Google Scholar 

  • Roach BT (1989) Origin and improvement of the genetic base of sugarcane. Proc Aust Soc Sugar Cane Technol 11:34–47

    Google Scholar 

  • Roberts SE, Grof CPL, Bucheli CS, Robinson SP, Wilson JR (1996) Genetic engineering of sugarcane for low colour raw sugar. In: Wilson JR, Hogarth DM, Campbell JA, Garside AL (eds) Sugarcane: research towards efficient and sustainable production. CSIRO Division of Tropical Crops and Pastures, Brisbane, pp 130–132

    Google Scholar 

  • Rocha FR et al (2007) Signal transduction-related responses to phytohormones and environmental challenges in sugarcane. BMC Genomics 8:71

    Article  PubMed  CAS  Google Scholar 

  • Rosa E Jr, Nogueira FTS, Menossi M, Ulian EC, Arruda P (2005) Identification of methyl jasmonate-responsive genes in sugarcane using cDNA arrays. Braz J Plant Physiol, Brasil 17:173–180

    Google Scholar 

  • Rossi M, Araújo PG, Van Sluys MA (2001) Survey of transposable elements in sugarcane expressed sequence tags (ESTs). Gen Mol Biol 24:147–154

    CAS  Google Scholar 

  • Rossi M, Araujo PG, Paulet F, Garsmeur O, Dias M, Chen H, Van Sluys MA, D’Hont A (2003) Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Molec Genet Genomics 269:406–419

    Article  CAS  Google Scholar 

  • Saccaro NL Jr, Van Sluys MA, de Mello VA, Rossi M (2007) MudrA-like sequences from rice and sugarcane cluster as two bona fide transposon clades and two domesticated transposases. Gene 392:117–125

    Article  PubMed  CAS  Google Scholar 

  • Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB, Friend SH (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–302

    Article  PubMed  CAS  Google Scholar 

  • Schlögl PS, Nogueira FT, Drummond RD, Felix JM, Rosa VE Jr, Leite A, Ulian EC, Menossi M (2008) Identification of new ABA- and MEJA-activated sugarcane bZIP genes by data mining in the SUCEST database. Plant Cell Rep 27:335–345

    Article  PubMed  CAS  Google Scholar 

  • Selvi A, Nair N, Balasundaram N, Mohapatra T (2003) Evaluation of maize microsatellite markers for genetic diversity analysis and fingerprinting in sugarcane. Genome 403:394–403

    Article  Google Scholar 

  • Setamou M, Bernal JS, Legaspi JC, Mirkov TE, Legaspi BC (2002) Evaluation of lectin-expressing transgenic sugarcane against stalkborers (Lepidoptera: Pyralidae): effects on life history parameters. J Econ Entomol 95:469–477

    Article  PubMed  CAS  Google Scholar 

  • Snyman SJ, Baker C, Huckett BI, McFarlane SA, van Antwerpen T, Berry S, Omarjee J, Rs R, Watt DA (2008) South African Sugarcane Research Institute: embracing biotechnology for crop improvement research. Sugar Tech 10:1–13

    Article  CAS  Google Scholar 

  • Syvänem AC (2001) Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet 2:930–942

    Article  CAS  Google Scholar 

  • Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci USA 98:9161–9166

    Article  PubMed  CAS  Google Scholar 

  • Umemoto T, Aoki N, Hongxuan L, Nakamura Y, Inouchi N, Sato Y, Yano M, Hirabayashi H, Maruyama S (2004) Natural variation in rice starch synthase IIa affects enzyme and starch properties. Funct Plant Biol 31:671–684

    Article  CAS  Google Scholar 

  • Vettore AL et al (2003) Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome Res 13:2725–2735

    Article  PubMed  Google Scholar 

  • Vickers JE, Grof CPL, Bonnett GD, Jackson PA, Knight DP, Roberts SE, Robinson SP (2005) Overexpression of polyphenol oxidase in transgenic sugarcane results in darker juice and raw sugar. Crop Sci 45:354–362

    Article  CAS  Google Scholar 

  • Vu JC, Allen LH Jr (2009) Growth at elevated CO2 delays the adverse effects of drought stress on leaf photosynthesis of the C4 sugarcane. J Plant Physiol 166:107–116

    Article  PubMed  CAS  Google Scholar 

  • Vu JC, Allen LH Jr, Gesch RW (2006) Up-regulation of photosynthesis and sucrose metabolism enzymes in young expanding leaves of sugarcane under elevated growth CO2. Plant Sci 171:123–131

    Article  CAS  Google Scholar 

  • Wei X, Jackson PA, McIntyre CL, Aitken KS, Croft B (2006) Associations between DNA markers and resistance to diseases in sugarcane and effects of population substructure. Theor Appl Genet 114:155–164

    Article  PubMed  CAS  Google Scholar 

  • Wenzel G (2006) Molecular plant breeding: achievements in green biotechnology and future perspectives. Appl Microbiol Biotechnol 70:642–650

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Birch R (2007) Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotechnol J 5:109–117

    Article  PubMed  CAS  Google Scholar 

  • Yu J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZB, Kao CH, Basten CJ (1999) Estimating the genetic architecture of quantitative traits. Genet Res 74:279–289

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Xu J, Birch RG (1999) Engineered detoxification confers resistance against a pathogenic bacterium. Nat Biotechnol 17:1021–1024

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glaucia M. Souza.

Additional information

Communicated by: Ray Ming

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hotta, C.T., Lembke, C.G., Domingues, D.S. et al. The Biotechnology Roadmap for Sugarcane Improvement. Tropical Plant Biol. 3, 75–87 (2010). https://doi.org/10.1007/s12042-010-9050-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-010-9050-5

Keywords

Navigation