Skip to main content
Log in

Dual modified antiphospho (Ser10)-acetyl (Lys14)-histone H3 predominantly mark the pericentromeric chromatin during mitosis in monokinetic plants

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Epigenetic regulatory posttranslational histone modification marks not only function individually but also capable to act in combination as a unique pattern. A total of 16 plant species belonging to 11 genera of eight families (five dicots and three monocots) including land plants, epiphytes (orchids) and the holokinetic taxa (Drosera spp.) were analysed for chromosomal distribution of dual modified antiphospho (Ser10)-acetyl (K14)-histone H3 (H3S10phK14ac) to understand the combinatorial chromatin dynamics during mitotic cell division in plants. The anti-H3S10phK14ac evidently mark the pericentromeric chromatin on mitotic chromosomes of the plants excluding the holokinetic Drosera species, which revealed the immunolabelling of whole chromosomes all along the arms. The dual modified immunosignals were absent during early stages of mitosis, appeared intensively at metaphase and remained visible until late-anaphase/telophase however, labelled the whole chromosomes during meiotic metaphase I. Colocalization of anti-H3S10phK14ac with an onion’s CENH3 antibody on mitotic chromosomes of Allium revealed the chromosomal location of anti-H3S10phK14ac in the region between signals for CENH3 detection. Overall analysis suggests that the unique localization of combinatorial histone modification mark at pericentromeric chromatin might have attributed through ‘phospho-acetyl’ cross talk that ultimately facilitate the sister chromatid cohesion at pericentromeres following condensation events in mitotic chromosomes. Here, we propose that dual modified H3S10phK14ac histone may serve as an additional cytogenetic landmark to identify pericentromeric chromatin during mitosis in plants. The plausible role of histone cross talk and future perspectives of combinatorial histone modification marks in plant cytogenetics with special reference to chromatin dynamics have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Barth T. K. and Imhof A. 2010 Fast signals and slow marks: the dynamics of histone modifications. Trends Biochem. Sci. 35, 618–626.

    Article  CAS  PubMed  Google Scholar 

  • Briggs S. D., Xiao T, Sun Z. W., Caldwell J. A., Shabanowitz J., Hunt D. F. et al. 2002 Gene silencing: trans-histone regulatory pathway in chromatin. Nature 418, 498.

    Article  CAS  PubMed  Google Scholar 

  • Brunmeir R., Lagger S., Simboeck E., Sawicka A., Egger G., Hagelkruys A. et al. 2010 Epigenetic regulation of a murine retrotransposon by a dual histone modification mark. PLoS Genet. 6, e1000927.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheung P., Allis C. D. and Sassone-Corsi P. 2000 Signaling to chromatin through histone modifications. Cell 103, 263–271.

    Article  CAS  PubMed  Google Scholar 

  • Clayton A. L., Rose S., Barratt M. J. and Mahadevan L. C. 2000 Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation. EMBO J. 19, 3714–3726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demidov D., Schubert V., Kumke K., Weiss O., Karimi-Ashtiyani R., Buttlar J. et al. 2014 Anti-phosphorylated histone H2AThr120: a universal microscopic marker for centromeric chromatin of mono- and holocentric plant species. Cytogenet. Genome Res. 143, 150–156.

    Article  CAS  PubMed  Google Scholar 

  • Daujat S., Bauer U. M., Shah V., Turner B., Berger S. and Kouzarides T. 2002 Crosstalk between CARM1 methylation and CBP acetylation on histone H3. Curr. Biol. 12, 2090–2097.

    Article  CAS  PubMed  Google Scholar 

  • Dong Q. and Han F. 2012 Phosphorylation of histone H2A is associated with centromere function and maintenance in meiosis. Plant J. 71, 800–809.

    Article  CAS  PubMed  Google Scholar 

  • Fischle W., Wang Y. and Allis C. D. 2003 Binary switches and modification cassettes in histone biology and beyond. Nature 425, 475–479.

    Article  CAS  PubMed  Google Scholar 

  • Fischle W., Tseng B. S., Dormann H. L., Ueberheide B. M., Garcia B. A., Shabanowitz J. et al. 2005 Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438, 1116–1122.

    Article  CAS  PubMed  Google Scholar 

  • Fuchs J., Demidov D., Houben A. and Schubert I. 2006 Chromosomal histone modification patterns—from conservation to diversity. Trends Plant Sci. 11, 199–208.

    Article  CAS  PubMed  Google Scholar 

  • Gao Z., Fu S., Dong Q., Han F. and Birchler J. A. 2011 Inactivation of a centromere during the formation of a translocation in maize. Chromosome Res. 19, 755–761.

    Article  CAS  PubMed  Google Scholar 

  • Garcia B. A., Barber C. M., Hake S. B., Ptak C., Turner F. B., Busby S. A. et al. 2005 Modifications of human histone H3 variants during mitosis. Biochemistry 44, 13202–13213.

    Article  CAS  PubMed  Google Scholar 

  • Goto H., Tomono Y., Ajiro K., Kosako H., Fujita M., Sakurai M. et al. 1999 Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation. J. Biol. Chem. 274, 25543–25549.

    Article  CAS  PubMed  Google Scholar 

  • Granot G., Sikron-Persi N., Li Y. and Grafi G. 2008 Phosphorylated H3S10 occurs in distinct regions of the nucleolus in differentiated leaf cells. Biochim. Biophys. Acta 1789, 220–224.

    Article  PubMed  Google Scholar 

  • Guerra M., Brasileiro-Vidal A. C., Arana P. and Puertas M. J. 2006 Mitotic microtubule development and histone H3 phosphorylation in the holocentric chromosomes of Rhynchospora tenuis (Cyperaceae). Genetica 126, 33–41.

    Article  CAS  PubMed  Google Scholar 

  • Han F., Lamb J. C. and Birchler J. A. 2006 High frequency of centromere inactivation resulting in stable dicentric chromosomes in maize. Proc. Natl. Acad. Sci. USA 103, 3238–3243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han F., Gao Z. and Birchler J. A. 2009 Reactivation of an inactive centromere reveals epigenetic and structural components for centromere specification in maize. Plant Cell 21, 1929– 1939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendzel M. J., Wei Y., Mancini M. A., Van Hooser A., Ranalli T., Brinkley B. R. et al. 1997 Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106, 348–360.

    Article  CAS  PubMed  Google Scholar 

  • Houben A., Wako T., Furushima-Shimogawara R., Presting G., Kunzel G., Schubert I. and Fukui K. 1999 The cell cycle dependent phosphorylation of histone H3 is correlated with the condensation of plant mitotic chromosomes. Plant J. 18, 675– 679.

    Article  CAS  PubMed  Google Scholar 

  • Houben A., Demidov D., Caperta A. D., Karimi R., Agueci F. and Vlasenko L. 2007 Phosphorylation of histone H3 in plants—a dynamic affair. Biochim. Biophys. Acta 1769, 308–315.

    Article  CAS  PubMed  Google Scholar 

  • Jackson A., Shires R., Chalkley D. K. and Granner D. K. 1975 Studies on highly metabolically active acetylation and phosphorylation of histones. J. Biol. Chem. 250, 4856–4863.

    CAS  PubMed  Google Scholar 

  • Jenuwein T. and Allis C. D. 2001 Translating the histone code. Science 293, 1074–1080.

    Article  CAS  PubMed  Google Scholar 

  • Jia S., Kobayashi R. and Grewal S. I. 2005 Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble heterochromatin. Nat. Cell Biol. 7, 1007–1013.

    Article  CAS  PubMed  Google Scholar 

  • Lo W. S., Trievel R., Rojas J., Duggan L., Allis D., Marmorstein R. and Berger S. 2000 Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol. Cell 5, 917–926.

    Article  CAS  PubMed  Google Scholar 

  • Manzanero S., Arana P., Puertas M. J. and Houben A. 2000 The chromosomal distribution of phosphorylated histone H3 differs between plants and animals at meiosis. Chromosoma 109, 308–317.

    Article  CAS  PubMed  Google Scholar 

  • Marcon-Tavares A. B., Felinto F., Feitoza L., Barros e Silva A. E. and Guerra M. 2014 Different patterns of chromosomal histone H3 phosphorylation in land plants. Cytogenet. Genome Res. 143, 136–143.

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K., Kashihara K. and Murata M. 2005 Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Plant Cell 17, 1886– 1893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagaki K., Yamamoto M., Yamaji N., Mukai Y. and Murata M. 2012 Chromosome dynamics visualized with an anti-centromeric histone H3 antibody in Allium. PLoS One 7, e51315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor C. 2008 Chromosome segregation in mitosis: the role of centromeres. Nat. Edu. 1, 28.

    Google Scholar 

  • Prigent C. and Dimitrov S. 2003 Phosphorylation of serine 10 in histone H3, what for? J. Cell Sci. 116, 3677–3685.

    Article  CAS  PubMed  Google Scholar 

  • Salvador L. M., Park Y., Cottom J., Maizels E. T., Jones J. C., Schillace R. V. et al. 2001 Follicle-stimulating hormone stimulates protein kinase A-mediated histone H3 phosphorylation and acetylation leading to select gene activation in ovarian granulosa cells. J. Biol. Chem. 276, 40146–40155.

    Article  CAS  PubMed  Google Scholar 

  • Sawicka A. and Seiser C. 2014 Sensing core histone phosphorylation—a matter of perfect timing. Biochim. Biophys. Acta 1839, 711–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S. K., Yamamoto M. and Mukai Y. 2015 Immuno-cytogenetic manifestation of epigenetic chromatin modification marks in plants. Planta 241, 291–301.

    Article  CAS  PubMed  Google Scholar 

  • Sharma S. K., Yamamoto M. and Mukai Y. 2016 Distinct chromatin environment associated with phosphorylated H3S10 histone during pollen mitosis I in orchids. Protoplasma, (doi:10.1007/s00709-015-0925-z).

  • Simboeck E., Sawicka A., Zupkovitz G., Senese S., Winter S., Dequiedt F. et al. 2010 A phosphorylation switch regulates the transcriptional activation of cell cycle regulator p21 by histone deacetylase inhibitors. J. Biol. Chem. 285, 41062–41073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strahl B. D. and Allis C. D. 2000 The language of covalent histone modifications. Nature 403, 41–45.

    Article  CAS  PubMed  Google Scholar 

  • Sun Z. W. and Allis C. D. 2002 Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418, 104–108.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki G., Shiomi M., Morihana S., Yamamoto M. and Mukai Y. 2010 DNA methylation and histone modification in onion chromosomes. Genes Genet. Syst. 85, 377–382.

    Article  PubMed  Google Scholar 

  • Thomson S., Clayton A. L. and Mahadevan L. C. 2001 Independent dynamic regulation of histone phosphorylation and acetylation during immediate-early gene induction. Mol. Cell 8, 1231–1241.

    Article  CAS  PubMed  Google Scholar 

  • Van Hooser A., Goodrich D. W., Allis C. D., Brinkley B. R. and Mancini M. A. 1998 Histone H3 phosphorylation is required for the initiation, but not maintenance, of mammalian chromosome condensation. J. Cell Sci. 111, 3497–3506.

    CAS  PubMed  Google Scholar 

  • Wang Z. and Patel D. J. 2011 Combinatorial readout of dual histone modifications by paired chromatin-associated modules. J. Biol. Chem. 286, 8363–8368.

    Google Scholar 

  • Wei Y. and Allis C. D. 1998 A new marker for mitosis. Trends Cell Biol. 8, 266.

    Article  Google Scholar 

  • Wei Y., Mizzen C. A., Cook R. G., Gorovsky M. A. and Allis C. D. 1998 Phosphorylation of histone H3 at serine10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Proc. Natl. Acad. Sci. USA 95, 7480–7484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter S., Simboeck E., Fischle W., Zupkovitz G., Dohnal I., Mechtler K. et al. 2008 14–3–3 proteins recognize a histone code at histone H3 and are required for transcriptional activation. EMBO J. 27, 88–99.

    Article  CAS  PubMed  Google Scholar 

  • Xu D., Bai J., Duan Q., Costa M. and Dai W. 2009 Covalent modifications of histones during mitosis and meiosis. Cell Cycle 8, 3688–3694.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Japan Society for the Promotion of Science (JSPS), Japan, for providing postdoctoral fellowship and research grant (SKS, no. P13399/2013). Sincere thanks are also to Dr Go Suzuki and all members of Plant Molecular Genetics Laboratory and Osaka Kyoiku University, Osaka, Japan, for their constant encouragement and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SANTOSH KUMAR SHARMA.

Additional information

Corresponding editor: Umesh C. Lavania

SKS, MY and YM designed the experiments and analysed the results. SKS conducted the experiments and wrote the manuscript

[Sharma S. K., Yamamoto M. and Mukai Y. 2016 Dual modified antiphospho (Ser10)-acetyl (Lys14)-histone H3 predominantly mark the pericentromeric chromatin during mitosis in monokinetic plants. J. Genet. 95, xx–xx]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SHARMA, S.K., YAMAMOTO, M. & MUKAI, Y. Dual modified antiphospho (Ser10)-acetyl (Lys14)-histone H3 predominantly mark the pericentromeric chromatin during mitosis in monokinetic plants. J Genet 95, 965–973 (2016). https://doi.org/10.1007/s12041-016-0723-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-016-0723-1

Keywords

Navigation