Skip to main content
Log in

Genomewide analysis of MATE-type gene family in maize reveals microsynteny and their expression patterns under aluminum treatment

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Multidrug and toxic compound extrusion (MATE) proteins are a group of secondary active transporters, which widely exist in all living organisms and play important role in the detoxication of endogenous secondary metabolites and exogenous agents. However, to date, no systematic and comprehensive study of this family is reported in maize. Here, a total of 49 MATE genes (ZmMATE) were identified and divided into seven groups by phylogenetic analysis. Conserved intro–exon structures and motif compositions were investigated in these genes. Results by gene locations indicated that these genes were unevenly distributed among all 10 chromosomes. Tandem and segmental duplications appeared to contribute to the expansion and evolution of this gene family. The K a/ K s ratios suggested that the ZmMATE has undergone large-scale purifying selection on the maize genome. Interspecies microsynteny analysis revealed that there were independent gene duplication events of 10 ZmMATE. In addition, most maize MATE genes exhibited different expression profiles in diverse tissues and developmental stages. Sixteen MATE genes were chosen for further quantitative real-time polymerase chain reaction analysis showed differential expression patterns in response to aluminum treatment. These results provide a useful clue for future studies on the identification of MATE genes and functional analysis of MATE proteins in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bailey T. L., Boden M., Buske F. A., Frith M., Grant C. E., Clementi L. et al. 2009 MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, 202–208.

    Article  Google Scholar 

  • Cannon S. B., Mitra A., Baumgarten A., Young N. D. and May G. 2004 The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 4, 10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y., Hao X. and Cao J. 2014 Small auxin upregulated RNA (SAUR) gene family in maize: Identification, evolution, and its phylogenetic comparison with Arabidopsis, rice, and sorghum . J. Int. Plant Biol. 56, 133–150.

    Article  CAS  Google Scholar 

  • Debeaujon I., Peeters A., Leon-Kloosterziel K. M. and Koornneef M. 2001 The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13, 853–871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delhaize E., Gruber B. D. and Ryan P. R. 2007 The roles of organic anion permeases in aluminium resistance and mineral nutrition. FEBS Lett. 581, 2255–2262.

    Article  CAS  PubMed  Google Scholar 

  • Diener A. C., Gaxiola R. A. and Fink G. R. 2001 Arabidopsis ALF5, a multidrug efflux transporter gene family member, confers resistance to toxins. Plant Cell 13, 1625–1637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan K., Wang M., Miao Y., Ni M., Bibi N., Yuan S. et al. 2014 Molecular evolution and expansion analysis of the NAC transcription factor in Zea mays. PLoS One 9, e111837.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujii M., Yokosho K., Yamaji N., Saisho D., Yamane M., Takahashi H. et al. 2012 Acquisition of aluminium tolerance by modification of a single gene in barley. Nat. Commun. 3, 713.

    Article  PubMed  PubMed Central  Google Scholar 

  • Furukawa J., Yamaji N., Wang H., Mitani N., Murata Y., Sato K. et al. 2007 An aluminum-activated citrate transporter in barley. Plant Cell Physiol. 48, 1081–1091.

    Article  CAS  PubMed  Google Scholar 

  • Gabelman W. H., Loughman B. C., Magnavaca R., Gardner C. O. and Clark R. B. 1987 Evaluation of inbred maize lines for aluminum tolerance in nutrient solution. In Genetic aspects of plant mineral nutrition (ed. W. H. Gabelman and B. C. Loughman), pp. 255–265. Springer, Netherlands.

  • Gallie D. R., Geisler-Lee J., Chen J. and Jolley B. 2009 Tissue-specific expression of the ethylene biosynthetic machinery regulates root growth in maize. Plant Mol. Biol. 69, 195–211.

    Article  CAS  PubMed  Google Scholar 

  • Gaut B. S. 2002 Evolutionary dynamics of grass genomes. New Phytol. 154, 15–28.

    Article  CAS  Google Scholar 

  • Hvorup R. N., Winnen B., Chang A. B., Jiang Y., Zhou X. and Saier M. H. 2003 The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. Eur. J. Biochem. 270, 799–813.

    Article  CAS  PubMed  Google Scholar 

  • Ingram G. C., Boisnard-Lorig C., Dumas C. and Rogowsky P. M. 2000 Expression patterns of genes encoding HD-ZipIV homeo domain proteins define specific domains in maize embryos and meristems. Plant J. 22, 401–414.

    Article  CAS  PubMed  Google Scholar 

  • Kochian L. V., Hoekenga O. A. and Piñeros M. A. 2004 How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorus efficiency. Annu. Rev. Plant Biol. 55, 459–493.

    Article  CAS  PubMed  Google Scholar 

  • Koonin E. V. 2005 Orthologs, paralogs, and evolutionary genomics. In Annual review of genetics, pp. 309–338. Annual Reviews, Palo Alto.

  • Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D. et al. 2009 Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leng X., Liu D., Zhao M., Sun X., Li Y., Mu Q. et al. 2014 Genome-wide identification and analysis of FK506-binding protein family gene family in strawberry (Fragaria × ananassa). Gene 534, 390–399.

    Article  CAS  PubMed  Google Scholar 

  • Li L. G., He Z. Y., Pandey G. K., Tsuchiya T. and Luan S. 2002 Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification. J. Biol. Chem. 277, 5360–5368.

    Article  CAS  PubMed  Google Scholar 

  • Librado P. and Rozas J. 2009 DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.

    Article  CAS  PubMed  Google Scholar 

  • Liu J., Magalhaes J. V., Shaff J. and Kochian L. V. 2009 Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J. 57, 389–399.

    Article  CAS  PubMed  Google Scholar 

  • Livak K. J. and Schmittgen T. D. 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔCT method. Methods 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Lynch M. and Conery J. S. 2003 The evolutionary demography of duplicate genes. J. Struct. Funct. Genomics 3, 35–44.

    Article  CAS  PubMed  Google Scholar 

  • Magalhaes J. V., Liu J., Guimarães C. T., Lana U. G. P., Alves V. M. C., Wang Y. et al. 2007 A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat. Genet. 39, 1156–1161.

    Article  CAS  PubMed  Google Scholar 

  • Maron L. G., Piñeros M. A., Guimarães C. T., Magalhaes J. V., Pleiman J. K., Mao C. et al. 2010 Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. Plant J. 61, 728–740.

    Article  CAS  PubMed  Google Scholar 

  • Maron L. G., Guimaraes C. T., Kirst M., Albert P. S., Birchler J. A., Bradbury P. J. et al. 2013 Aluminum tolerance in maize is associated with higher MATE1 gene copy number. Proc. Natl. Acad. Sci. USA 110, 5241–5246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morita Y., Kodama K., Shiota S., Mine T., Kataoka A., Mizushima T. et al. 1998 NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob. Agents Chemother. 42, 1778–1782.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Omote H., Hiasa M., Matsumoto T., Otsuka M. and Moriyama Y. 2006 The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol. Sci. 27, 587–593.

    Article  CAS  PubMed  Google Scholar 

  • Peng X., Zhao Y., Cao J., Zhang W., Jiang H., Li X. et al. 2012 CCCH-type zinc finger family in maize: genome-wide identification, classification and expression profiling under abscisic acid and drought treatments. PLoS One 7, e40120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickett F. B. and Meeks-Wagner D. R. 1995 Seeing double: appreciating genetic redundancy. Plant Cell 7, 1347–1356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piñeros M. A., Magalhaes J. V., Carvalho Alves V. M. and Kochian L. V. 2002 The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize. Plant Physiol. 129, 1194–1206.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryan P. R., Raman H., Gupta S., Horst W. J. and Delhaize E. 2009 A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol. 149, 340–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salse J., Bolot S., Throude M., Jouffe V., Piegu B., Quraishi U. M. et al. 2008 Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20, 11–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnable P. S., Ware D., Fulton R. S., Stein J. C., Wei F., Pasternak S. et al. 2009 The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112–1115.

    Article  CAS  PubMed  Google Scholar 

  • Sekhon R. S., Lin H., Childs K. L., Hansey C. N., Buell C. R., Leon N. et al. 2011 Genome-wide atlas of transcription during maize development. Plant J. 66, 553–563.

    Article  CAS  PubMed  Google Scholar 

  • Sivaguru M., Liu J. and Kochian L. V. 2013 Targeted expression of SbMATE in the root distal transition zone is responsible for sorghum aluminum resistance. Plant J. 76, 297–307.

    CAS  PubMed  Google Scholar 

  • Swigoňová Z., Lai J. S., Ma J. X., Ramakrishna W., Llaca V., Bennetzen J. L. et al. 2004 Close split of sorghum and maize genome progenitors. Genome Res. 14, 1916–1923.

    Article  PubMed  PubMed Central  Google Scholar 

  • Takanashi K., Yokosho K., Saeki K., Sugiyama A., Sato S., Tabata S. et al. 2013 LjMATE1: a citrate transporter responsible for iron supply to the nodule infection zone of lotus japonicas. Plant Cell Physiol. 54, 1749.

    Article  CAS  Google Scholar 

  • Takanashi K., Shitan N. and Yazaki K. 2014 The multidrug and toxic compound extrusion (MATE) family in plants. Plant Biotechnol. 31, 417–430.

    Article  CAS  Google Scholar 

  • Tamura K., Peterson D., Peterson N., Stecher G., Nei M. and Kumar S. 2011 MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor J. S. and Raes J. 2004 Duplication and divergence: the evolution of new genes and old ideas. Annu. Rev. Genet. 38, 615–643.

    Article  CAS  PubMed  Google Scholar 

  • Tiwari M., Sharma D., Singh M., Tripathi R. D. and Trivedi P. K. 2014 Expression of OsMATE1 and OsMATE2 alters development, stress responses and pathogen susceptibility in Arabidopsis. Sci. Rep. 4, 3964.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vision T. J., Brown D. G. and Tanksley S. D. 2000 The origins of genomic duplications in Arabidopsis. Science 290, 2114–2117.

    Article  CAS  PubMed  Google Scholar 

  • Vonuexkull H. R. and Mutert E. 1995 Global extent, development and economic impact of acid soils. Plant Soil 171, 1–15.

    Article  CAS  Google Scholar 

  • Wang Y., Tang H., DeBarry J. D., Tan X., Li J., Wang X. et al. 2012 MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei F., Coe E., Nelson W., Bharti A. K., Engler F., Butler E. et al. 2007 Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet. 3, 1254–1263.

    Article  CAS  Google Scholar 

  • Yang Z., Gu S., Wang X., Li W., Tang Z. and Xu C. 2008 Molecular evolution of the CPP-like gene family in plants: Insights from comparative genomics of Arabidopsis and rice. J. Mol. Evol. 67, 266–277.

    Article  CAS  PubMed  Google Scholar 

  • Yokosho K., Yamaji N. and Ma J. F. 2010 Isolation and characterisation of two MATE genes in rye. Funct. Plant Biol. 37, 296–303.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the key project of National Natural Science Foundation of China (31501321) the Anhui University Natural Science Research Projects (KJ2015A100) and Anhui Postdoctoral Science Foundation and Colleges. We would like to thank the members of the Key Laboratory of Crop Biology of Anhui province for their assistance in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BEIJIU CHENG.

Additional information

[Zhu H., Wu J., Jiang Y., Jin J., Zhou W., Wang Y., Han G., Zhao Y. and Cheng B. 2016 Genomewide analysis of MATE-type gene family in maize reveals microsynteny and their expression patterns under aluminum treatment. J. Genet. 95, xx–xx]

Huasheng Zhu and Jiandong Wu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(XLSX 17.7 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ZHU, H., WU, J., JIANG, Y. et al. Genomewide analysis of MATE-type gene family in maize reveals microsynteny and their expression patterns under aluminum treatment. J Genet 95, 691–704 (2016). https://doi.org/10.1007/s12041-016-0686-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-016-0686-2

Keywords

Navigation