Skip to main content

Advertisement

Log in

Characterization and expression analyses of the H+-pyrophosphatase gene in rye

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The H+-pyrophosphatase (H +-PPase) gene plays an important role in maintaining intracellular proton gradients. Here, we characterized the full-length complementary DNA (cDNA) and DNA of the H +-PPase gene ScHP1 in rye (Secale cereale L. ‘Qinling’). We determined the subcellular localization of this gene and predicted the corresponding protein structure. We analysed the evolutionary relationship between ScHP1 and H +−PPase genes in other species, and did real-time quantitative polymerase chain reaction to explore the expression patterns of ScHP1 in rye plants subjected to N, P and K deprivation and to cold, high-salt and drought stresses. ScHP1 cDNA included a 2289 bp open reading frame (ORF) encoding 762 amino acid residues with 14 transmembrane domains. The genomic ScHP1 DNA was 4354 bp and contained eight exons and seven introns. ScHP1 was highly homologous with other members of the H +-PPase gene family. When the full-length ORF was inserted into the expression vector pA7-YFP, the fluorescent microscopy revealed that ScHP1-YFP fusion protein was located in the plasma membrane. Rye plants that were subjected to N deprivation, cold and high-salt stresses, ScHP1 expression was higher in the leaves than roots. Conversely, plants subjected to P and K deprivation and drought stress, ScHP1 expression was higher in the roots than leaves. Under all the investigated stress conditions, expression of ScHP1 was lower in the stem than in the leaves and roots. Our results imply that ScHP1 functions under abiotic stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Baltscheffsky M., Nadanaciva S. and Schultz A. 1998 A pyrophosphate synthase gene: molecular cloning and sequencing of the cDNA encoding the inorganic pyrophosphate synthase from Rhodospirillum rubrum. BBA-Biomembranes 1364, 301–306.

    CAS  PubMed  Google Scholar 

  • Bao A. K., Wang S. M., Wu G. Q., Xi J. J., Zhang J. L. and Wang C. M. 2009 Overexpression of the Arabidopsis H +-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.) Plant Sci. 176, 232–240.

    Article  CAS  Google Scholar 

  • Bremberger C. and Lüttge U. 1992 Dynamics of tonoplast proton pumps and other tonoplast proteins of Mesembryanthemum crystallinum L. during the induction of Crassulacean acid metabolism. Planta 188, 575–580.

    Article  CAS  PubMed  Google Scholar 

  • Brini F., Gaxiola R. A., Berkowitz G. A. and Masmoudi K. 2005 Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump. Plant Physiol. Biochem. 43, 347–354.

    Article  CAS  PubMed  Google Scholar 

  • Carystinos G. D., MacDonald H. R., Monroy A. F., Dhindsa R. S. and Poole R. J. 1995 Vacuolar H +-translocating pyrophosphatase is induced by anoxia or chilling in seedlings of rice. Plant Physiol. 108, 641–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Churchill K. A. and Sze H. 1984 Anion-sensitive, H +-pumping ATPase of oat roots: direct effects of Cl , NO\(_{\mathrm {3}}^{\mathrm {-}}\), and a disulfonic stilbene. Plant Physiol. 76, 490–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colombo R. and Cerana R. 1993 Enhanced activity of tonoplast pyrophosphatase in NaCl-grown cells of Daucus carota. J. Plant Physiol. 142, 226–229.

    Article  CAS  Google Scholar 

  • Crawford N. M. 1995 Nitrate: nutrient and signal for plant growth. Plant Cell 7, 859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darley C. P., Davies J. M. and Sanders D. 1995 Chill-induced changes in the activity and abundance of the vacuolar proton-pumping pyrophosphatase from mung bean hypocotyls. Plant Physiol. 109, 659–665.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dhawan S. S. and Sharma A. 2014 Analysis of differentially expressed genes in abiotic stress response and their role in signal transduction pathways. Protoplasma 251, 81–91.

    Article  PubMed  Google Scholar 

  • Duan X. G., Yang A. F., Gao F., Zhang S. L. and Zhang J. R. 2007 Heterologous expression of vacuolar H +-PPase enhances the electrochemical gradient across the vacuolar membrane and improves tobacco cell salt tolerance. Protoplasma 232, 87–95.

    Article  CAS  PubMed  Google Scholar 

  • Engelstad O. and Allen S. 1971 Ammonium pyrophosphate and ammonium orthophosphate as phosphorus sources: effects of soil temperature, placement, and incubation. Soil Sci. Soc. Am. J. 35, 1002–1004.

    Article  CAS  Google Scholar 

  • Fukuda A., Chiba K., Maeda M., Nakamura A., Maeshima M. and Tanaka Y. 2004 Effect of salt and osmotic stresses on the expression of genes for the vacuolar H +-pyrophosphatase, H +-ATPase subunit A, and Na +/H + antiporter from barley. J. Exp. Bot. 55, 585–594.

    Article  CAS  PubMed  Google Scholar 

  • Gaxiola R. A., Rao R., Sherman A., Grisafi P., Alper S. L. and Fink G. R. 1999 The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc. Natl. Acad. Sci. USA 96, 1480–1485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill J., Scott D., Luo S. and Docampo R. 2000 Cloning and functional expression of a gene encoding a vacuolar-type proton-translocating pyrophosphatase from Trypanosoma cruzi. Biochem. J. 351, 281–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasai M., Nakamura T., Kudo N., Sato H., Maeshima M. and Sawada S. 1998 The activity of the root vacuolar H +-pyrophosphatase in rye plants grown under conditions deficient in mineral nutrients. Plant Cell Physiol. 39, 890–894.

    Article  CAS  PubMed  Google Scholar 

  • Kuo S. Y., Chien L. F., Hsiao Y. Y., Van R. C., Yan K. H., Liu P. F. et al. 2005 Proton pumping inorganic pyrophosphatase of endoplasmic reticulum-enriched vesicles from etiolated mung bean seedlings. J. Plant Physiol. 162, 129–138.

    Article  CAS  PubMed  Google Scholar 

  • Lerchl J., König S., Zrenner R. and Sonnewald U. 1995 Molecular cloning, characterization and expression analysis of isoforms encoding tonoplast-bound proton-translocating inorganic pyrophosphatase in tobacco. Plant Mol. Biol. 29, 833–840.

    Article  CAS  PubMed  Google Scholar 

  • Li B., Wei A., Song C., Li N. and Zhang J. 2008 Heterologous expression of the TsVP gene improves the drought resistance of maize. Plant Biotechnol. J. 6, 146–159.

    Article  CAS  PubMed  Google Scholar 

  • Li J., Yang H., Peer W. A., Richter G., Blakeslee J., Bandyopadhyay A. et al. 2005 Arabidopsis H +-PPase AVP1 regulates auxin-mediated organ development. Science 310, 121–125.

    Article  CAS  PubMed  Google Scholar 

  • Li X., Guo C., Gu J., Duan W., Zhao M., Ma C. et al. 2014 Overexpression of VP, a vacuolar H +-pyrophosphatase gene in wheat (Triticum aestivum L.), improves tobacco plant growth under Pi and N deprivation, high salinity, and drought. J. Exp. Bot. 65, 683–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z., Baldwin C. M., Hu Q., Liu H. and Luo H. 2010 Heterologous expression of Arabidopsis H +pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.) Plant Cell Environ. 33, 272–289.

    Article  CAS  PubMed  Google Scholar 

  • Lin S. M., Tsai J. Y., Hsiao C. D., Huang Y. T., Chiu C. L., Liu M. H. et al. 2012 Crystal structure of a membrane-embedded H +-translocating pyrophosphatase. Nature 484, 399–403.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y. G. and Chen Y. L. 2007 High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. BioTechniques 43, 649–656.

    Article  CAS  PubMed  Google Scholar 

  • Long A., Williams L. E., Nelson S. and Hall J. 1995 Localization of membrane pyrophosphatase activity in Ricinus communis seedlings. J. Plant Physiol. 146, 629–638.

    Article  CAS  Google Scholar 

  • Lv S., Zhang K., Gao Q., Lian L., Song Y. and Zhang J. 2008 Overexpression of an H +-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant Cell Physiol. 49, 1150–1164.

    Article  CAS  PubMed  Google Scholar 

  • Maeshima M. 2000 Vacuolar H +-pyrophosphatase. BBA-Biomembranes 1465, 37–51.

    Article  CAS  PubMed  Google Scholar 

  • Mitsuda N., Enami K., Nakata M., Takeyasu K. and Sato M. H. 2001 Novel type Arabidopsis thaliana H +-PPase is localized to the Golgi apparatus. FEBS Lett. 488, 29–33.

    Article  CAS  PubMed  Google Scholar 

  • Murray M. and Thompson W. F. 1980 Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321–4326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakanishi Y. and Maeshima M. 1998 Molecular cloning of vacuolar H +-pyrophosphatase and its developmental expression in growing hypocotyl of mung bean. Plant Physiol. 116, 589–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obermeyer G., Sommer A. and Bentrup F. W. 1996 Potassium and voltage dependence of the inorganic pyrophosphatase of intact vacuoles from Chenopodium rubrum. BBA-Biomembranes 1284, 203–212.

    Article  PubMed  Google Scholar 

  • Park S., Li J., Pittman J. K., Berkowitz G. A., Yang H., Undurraga S. et al. 2005 Up-regulation of a H +-pyrophosphatase (H +-PPase) as a strategy to engineer drought-resistant crop plants. Proc. Natl. Acad. Sci. USA 102, 18830–18835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasapula V., Shen G., Kuppu S., PaezValencia J., Mendoza M., Hou P. et al. 2011 Expression of an Arabidopsis vacuolar H +pyrophosphatase gene (AVP1) in cotton improves drought and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol. J. 9, 88–99.

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl M W. 2001 A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson D. G., Haschke H. P., Hinz G., Hoh B., Maeshima M. and Marty F. 1996 Immunological detection of tonoplast polypeptides in the plasma membrane of pea cotyledons. Planta 198, 95–103.

    CAS  Google Scholar 

  • Robinson D. G., Hoppenrath M., Oberbeck K., Luykx P. and Ratajczak R. 1998 Localization of pyrophosphatase and V-ATPase in Chlamydomonas reinhardtii. Bot. Acta 111, 108–122.

    Article  CAS  Google Scholar 

  • Sakakibara Y., Kobayashi H. and Kasamo K. 1996 Isolation and characterization of cDNAs encoding vacuolar H +-pyrophosphatase isoforms from rice (Oryza sativa L.) Plant Mol. Biol. 31, 1029–1038.

    Article  CAS  PubMed  Google Scholar 

  • Sarafian V., Kim Y., Poole R. J. and Rea P. A. 1992 Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 89, 1775–1779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K., Stecher G., Peterson D., Filipski A. and Kumar S. 2013 MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka Y., Chiba K., Maeda M. and Maeshima M. 1993 Molecular cloning of cDNA for vacuolar membrane proton-translocating inorganic pyrophosphatase in Hordeum vulgare. Biochem. Biophys. Res. Commun. 190, 1110–1114.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S. 1994 Low temperature-induced cytoplasmic acidosis in cultured mung bean (Vigna radiata L.) cells. Plant Physiol. 104, 1131–1138.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zörb C., Noll A., Karl S., Leib K., Yan F. and Schubert S. 2005 Molecular characterization of Na +/H + antiporters (ZmNHX) of maize (Zea mays L.) and their expression under salt stress . J. Plant Physiol. 162, 55–66.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Transgenic Research Programme (2013ZX08002-005) and the International Science and Technology Cooperation Programme of China (no. 2015DFA 30600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YU-MING WEI.

Additional information

[Wang C.-S., Jiang Q.-T., Ma J., Wang X.-Y., Wang J.-R., Chen G.-Y., Qi P.-F., Peng Y.-Y., Lan X.-J., Zheng Y.-L. and Wei Y.-M. 2016 Characterization and expression analyses of the H+-pyrophosphatase gene in rye. J. Genet. 95, xx–xx]

Chang-Shui Wang and Qian-Tao Jiang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1.68 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

WANG, CS., JIANG, QT., MA, J. et al. Characterization and expression analyses of the H+-pyrophosphatase gene in rye. J Genet 95, 565–572 (2016). https://doi.org/10.1007/s12041-016-0664-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-016-0664-8

Keywords

Navigation