Skip to main content
Log in

Identification and introgression of QTLs implicated in resistance to sorghum downy mildew (Peronosclerospora sorghi (Weston and Uppal) C. G. Shaw) in maize through marker-assisted selection

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Sorghum downy mildew caused by Peronosclerospora sorghi is a major disease of maize and resistance is under the control of polygenes which necessitated identification of quantitative-trait loci (QTLs) for initiating marker-assisted introgression of resistant QTLs in elite susceptible inbred lines. In the present study, QTLs for sorghum downy mildew (SDM) resistance in maize were identified based on cosegregation with linked simple sequence repeats in 185 F2 progeny from a cross between susceptible (CM500-19) and resistant (MAI105) parents. F3 families were screened in the National Sorghum Downy Mildew Screening Nursery during 2010 and 2011. High heritability was observed for the disease reaction. The final map generated using 87 SSR markers had 10 linkage groups, spanning a length of 1210.3 cM. Although, we used only 87 SSR markers for mapping, the per cent of genome within 20 cM to the nearest marker was 88.5. Three putative QTLs for SDM resistance were located on chromosomes 3 (bin 3.01), 6 (bin 6.01) and 2 (bin 2.02) using composite interval mapping. The locus on chromosome 3 had a major effect and explained up to 12.6% of the phenotypic variation. The other two QTLs on chromosomes 6 and 2 had minor effects with phenotypic variation of 7.1 and 2%. The three QTLs appeared to have additive effects on resistance. The QTLs on chromosomes 3 and 6 were successfully used in the marker-assisted selection programme for introgression of resistance to SDM in eight susceptible maize lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Agrama H. A., Moussa M. E., Naser M. E., Tarek M. A. and Ibrahim A. H. 1999 Mapping of QTL for downy mildew resistance in maize. Theor. Appl. Genet. 99, 519–523.

    Article  CAS  PubMed  Google Scholar 

  • Balint-Kurti P. J., Wisser R. and Zwonitzer J. C. 2008 Use of an advanced intercross line population for precise mapping of quantitative trait loci for gray leaf spot resistance in maize. Crop Sci. 48, 1696–1704.

    Article  Google Scholar 

  • Beavis W. D. 1994 The power and deceit of QTL experiments: lessons from comparative QTL studies. In Proceedings of the 49th Annual Corn Sorghum Research Conference, American Seed Trade Association, pp. 250–266. Chicago, Washington, USA.

  • Bentolila S., Hardy T. and Guitton C. 1992 Comparative genetic analysis of F2 plants and anther culture derived plants of maize. Genome 35, 575–582.

    Article  Google Scholar 

  • Bohn M., Khairallah M. M., Jiang C., Gonzalez-De-Leon D., Hoisington D. A., Utz H. F. et al. 1996 QTL mapping in tropical maize: I. Genomic regions affecting leaf feeding resistance to sugarcane borer, other traits. Crop Sci. 36, 1352–1361.

    Article  Google Scholar 

  • Borges F. and Orange L. 1987 Diallel analysis of maize resistance to sorghum downy mildew. Crop Sci. 27, 178–180.

    Article  Google Scholar 

  • Bouchez A., Hospital F., Causse M., Gallais A. and Charcosset A. 2002 Marker assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics 162, 1945–1959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chung C. L., Poland J., Kump K., Benson J., Longfellow J., Walsh E. et al. 2011 Targeted discovery of quantitative trait loci for resistance to northern leaf blight and other diseases of maize. Theor. Appl. Genet. 123, 307–326.

    Article  PubMed  Google Scholar 

  • Craig J. and Odvody G. N. 1992 Current status of sorghum downy mildew control. In Sorghum and millets diseases: a second world review (ed. W. A. J. Milliano, R. A. Frederiksen and G. D. Bengston), pp. 213–217. ICRISAT, Patancheru, India.

  • Craig J., Bockholt A. J., Frederiksen R. A. and Zuber M. S. 1977 Reaction of important corn inbred lines to Sclerospora sorghi. Plant Dis. Rep. 61, 563–564.

    Google Scholar 

  • de Souza I. R. P., Schuelter A. R., Guimaraes C. T., Schuster I, de Oliveira E. and Redinbaugh M. 2008 Clustering of QTL conferring SCMV resistance in tropical maize. Hereditas 145, 167–173.

    Article  Google Scholar 

  • Frederiksen R. A. and Renfro B. L. 1977 Global status of maize downy mildew. Ann. Rev. Phytopathol. 15, 249–275.

    Article  Google Scholar 

  • Gardiner J., Coe E. H., Melia-Hancock S., Hoisington D. A. and Chao S. 1993 Development of a core RFLP map in maize using an immortalized-F2 population. Genetics 134, 917–930.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geetha K. and Jayaraman N. 2002 Inheritance of sorghum downy resistance in maize. Ind. J. Agric. Res. 36, 234–240.

    Google Scholar 

  • George M. L., Prasanna B. M., Rathore R. S., Setty T. A., Kasim F., Azrai M et al. 2003 Identification of QTLs conferring resistance to downy mildews of maize in Asia. Theor. Appl. Genet. 107, 544–551.

    Article  CAS  PubMed  Google Scholar 

  • Haley C. S. and Knott S. A. 1992 A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69, 315–324.

    Article  CAS  PubMed  Google Scholar 

  • Hallauer A. R. and Miranda J. B. 1981 Quantitative genetics in maize breeding. Iowa State University Press, Ames, USA.

  • Hoisington D., Khairallah M. and Gonzalez-de-Leon D. 1994 Laboratory protocols: CIMMYT applied molecular genetics laboratory, 2nd edition. CIMMYT, Mexico.

  • Isakeit T., Odvody G., Jahn R. and Decanini L. 2003 Peronosclerospora sorghi resistant to metalaxyl treatment of sorghum seed in Texas. Phytopathology 93, S39.

    Google Scholar 

  • Jiang C., Edmeades G. O., Armstead I., Lafitte H. R., Hayward M. D. and Hoisington D. 1999 Genetic analysis of adaptation differences between highland and lowland tropical maize using molecular markers. Theor. Appl. Genet. 99, 1106– 1119.

    Article  CAS  Google Scholar 

  • Krishnappa M., Naidu B. S. and Seetharam A. 1995 Inheritance of host resistance to downy mildew in maize. Crop Improv. 22, 33–37.

    Google Scholar 

  • Lander E. S. and Botstein D. 1989 Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. A. and Newburg L. 1987 Mapmaker: an interactive computer package for constructing primary linkage maps of experimental and natural populations. Genomics 1, 174–181.

    Article  CAS  PubMed  Google Scholar 

  • Lincoln S. E., Daly M. J. and Lander E. S. 1993 Mapping genes controlling quantitative traits using MAPMAKER/QTL version 1.1: a tutorial and reference manual. Whitehead Inst., Cambridge, USA.

  • Little T. M. and Hills F. J. 1978 Agricultural experimentation design and analysis. Wiley, New York, USA.

  • Lyttle T. W. 1991 Segregation distorters. Annu. Rev. Genet. 25, 511–557.

    Article  CAS  PubMed  Google Scholar 

  • McMullen M. D. and Louie R. 1991 Identification of a gene for resistance to wheat streak mosaic virus in maize. Phytopathology 81, 624–627.

    Article  Google Scholar 

  • McMullen M. D. and Simcox K. D. 1995 Genomic organization of disease and insect resistance genes in maize. Mol. Plant Microbe Interact. 8, 811–815.

    Article  CAS  Google Scholar 

  • Murigneux A., Baud S. and Beckert M. 1993 Molecular and morphological evaluation of doubled-haploid lines in maize. 2. Comparison with single-seed-descent lines. Theor. Appl. Genet. 87, 278–287.

    Article  CAS  PubMed  Google Scholar 

  • Nair S. K., Prasanna B. M., Garg A., Rathore R. S., Setty T. A. S. and Sing N. N. 2005 Identification and validation of QTLs conferring resistance to sorghum downy mildew (Peronosclerospora sorghi) and Rajasthan downy mildew (P. heteropogoni) in maize. Theor. Appl. Genet. 110, 1384–1392.

    Article  CAS  PubMed  Google Scholar 

  • Nallathambi P., Sundaram K. M. and Arumugachamy S. 2010 Inheritance of resistance to sorghum dowmy mildew (Peronosclerospora sorghi) in maize (Zea mays L.). Int. J. Agric. Environ. Biotech. 3, 285–293.

    Google Scholar 

  • Payak M. M. 1975 Downy mildews of maize in India. Trop. Agric. Res. 8, 13–18.

    Google Scholar 

  • Pereira M. G. and Lee M. 1995 Identification of genomic regions affecting plant height in sorghum and maize. Theor. Appl. Genet. 90, 380–388.

    Article  CAS  PubMed  Google Scholar 

  • Prasanna B. M. and Hoisington D. 2003 Molecular breeding for maize improvement: an overview. Ind. J. Biotech. 2, 85–98.

    CAS  Google Scholar 

  • Rao B. M., Shetty S. H. and Safeeulla K. M. 1984 Production of Peronosclerospora sorghi oospores in maize seeds and further studies on the seed-borne nature of the fungus. Ind. Phytopathol. 37, 278–283.

    Google Scholar 

  • Raymundo A. D. 2000 Downy mildew of maize in Asia: new perspectives in resistance breeding. In Proceedings of the 7th Asian Regional Maize Workshop (ed. S. K. Vasal, C. F. Gonzalez and F. Xingming), pp. 277–284. PCARRD, Los Banos, Philippines.

  • Ribaut J. M. and Bertran F. J. 1999 Single large-scale marker-assisted selection (SLS-MAS). Mol. Breed. 5, 531–541.

    Article  Google Scholar 

  • Ribaut J. M. and Ragot M. 2007 Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J. Exp. Bot. 58, 351–360.

    Article  CAS  PubMed  Google Scholar 

  • Ribaut J. M., Banzinger M., Betran J., Jiang C., Edmeades G. O., Dreher K. and Hoisington D. 2002 Use of molecular markers in plant breeding: drought tolerance improvement in tropical maize. In Quantitative genetics, genomics, and plant breeding (ed. M. S. Kang), pp. 85–99. CABI Publishing, Wallingford, UK.

  • Sabry A., Jeffers D., Vasal S. K., Frederiksen R. and Magill C. 2006 A region of maize chromosome 2 affects response to downy mildew pathogens. Theor. Appl. Genet. 113, 321–330.

    Article  CAS  PubMed  Google Scholar 

  • Saghai-Maroof M. A., Soliman K. M., Jorgensen R. A. and Allard R. W. 1984 Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location and population dymnamics. Proc. Natl. Acad. Sci. USA 81, 8014–8018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Searle S. R. 1971 Linear models. Wiley, New York, USA.

    Google Scholar 

  • Simcox K. D., McMullen M. D. and Louie R. 1995 Co-segregation of the maize dwarf mosaic virus resistance gene, mmdm1, with the nucleolus organizer region in maize. Theor. Appl. Genet. 90, 341–346.

    Article  CAS  PubMed  Google Scholar 

  • Singburaudom N. and Renfro B. L. 1982 Heritability of resistance in maize to sorghum downy mildew (Peronosclerospora sorghi (Weston and Uppal) C.G. Shaw). Crop Protec. 1, 323– 332.

    Article  Google Scholar 

  • Sharma R. C., De-Leon C. and Payak M. M. 1993 Diseases of maize in south and south-east Asia: problems and progress. Crop Protec. 12, 414–422.

    Article  Google Scholar 

  • Wang S., Basten C. J., Gaffney P. and Zeng Z. B. 2004 Windows QTL cartographer 2.0. user manual. Bioinformatics Research Centre, North Carolina State University, Raleigh, USA.

  • Williams R. J. 1984 Downy mildews of tropical cereals. Adv. Plant Pathol. 2, 1–103.

    Google Scholar 

  • Xu S. 2003 Theoretical basis of the Beavis effect. Genetics 165, 2259–2268.

    PubMed  PubMed Central  Google Scholar 

  • Zaitlin D., DeMars S. and Ma Y. 1993 Linkage of rhm, a recessive gene for resistance to southern corn leaf blight, to RFLP marker loci in maize (Zea mays L.) seedlings. Genome 36, 555–564.

    Article  CAS  PubMed  Google Scholar 

  • Zeng Z. B. 1994 Precision mapping of quantitative trait loci. Genetics 136, 1457–1468.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zwonitzer J. C., Coles N. D., Krakowsky M. D., Arellano C., Holland J. B., McMullen M. D. et al. 2010 Mapping resistance quantitative trait loci for three foliar diseases in a maize recombinant inbred line population—evidence for multiple disease resistance? Phytopathology 100, 72–79.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support for this research was provided by the Department of Biotechnology, Ministry of Science and Technology, Government of India. Special thanks to Dr H. C. Prasanna, Senior Scientist (Plant Breeding), IIVR, Varanasi, for his critical comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. C. LOHITHASWA.

Additional information

[Lohithaswa H. C., Jyothi K., Sunil Kumar K. R., Puttaramanaik and Hittalmani S. 2015 Identification and introgression of QTLs implicated in resistance to sorghum downy mildew (Peronosclerospora sorghi (Weston and Uppal) C. G. Shaw) in maize through marker-assisted selection. J. Genet. 94, xx–xx]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LOHITHASWA, H.C., JYOTHI, K., SUNIL KUMAR, K.R. et al. Identification and introgression of QTLs implicated in resistance to sorghum downy mildew (Peronosclerospora sorghi (Weston and Uppal) C. G. Shaw) in maize through marker-assisted selection. J Genet 94, 741–748 (2015). https://doi.org/10.1007/s12041-015-0590-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-015-0590-1

Keywords

Navigation