Skip to main content
Log in

Molecular characterization of zeta class glutathione S-transferases from Pinus brutia Ten.

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Glutathione transferases (GSTs; EC 2.5.1.18) play important roles in stress tolerance and metabolic detoxification in plants. In higher plants, studies on GSTs have focussed largely on agricultural plants. There is restricted information about molecular characterization of GSTs in gymnosperms. To date, only tau class GST enzymes have been characterized from some pinus species. For the first time, the present study reports cloning and molecular characterization of two zeta class GST genes, namely PbGSTZ1 and PbGSTZ2 from Pinus brutia Ten., which is an economically important pine native to the eastern Mediterranean region and have to cope with several environmental stress conditions. The PbGSTZ1 gene was isolated from cDNA, whereas PbGSTZ2 was isolated from genomic DNA. Sequence analysis of PbGSTZ1 and PbGSTZ2 revealed the presence of an open reading frame of 226 amino acids with typical consensus sequences of the zeta class plant GSTs. Protein and secondary structure prediction analysis of two zeta class PbGSTZs have shared common features of other plant zeta class GSTs. Genomic clone, PbGSTZ2 gene, is unexpectedly intronless. Extensive sequence analysis of PbGSTZ2, with cDNA clone, PbGSTZ1, revealed 87% identity at nucleotide and 81% identity at amino acid levels with 41 amino acids differences suggesting that genomic PbGSTZ2 gene might be an allelic or a paralogue version of PbGSTZ1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Barling D. R., Radzio U., Steiner U. and Weiler E. W. 1993 A glutathione S-transferase with glutathione peroxidase activity from Arabidopsis thaliana. Eur. J. Biochem. 216, 579–586.

    Article  Google Scholar 

  • Basantini M. and Srivastava A. 2007 Plant glutathione transferases—a decade falls short. Can. J. Bot. 85, 443–456.

    Article  Google Scholar 

  • Board P. G., Baker R. T., Chelvanayagam G. and Jermiin L. S 1997 Zeta, a novel class of glutathione transferases in a range of species from plants to humans. Biochem. J. 238, 929–935.

    Article  Google Scholar 

  • Chelvanayagam G., Wilce M. C. J., Parker M. W., Tan K. L. and Board P. G 1997 Homology model for the human GSTT2 theta class glutathione transferase. Proteins 27, 118–130.

    Article  CAS  PubMed  Google Scholar 

  • Cummins I., Cole D. J. and Edwards R. A. 1998 Role for glutathione S-transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. Plant J. 18, 285–292.

    Article  Google Scholar 

  • Diopan V., Shestivska V., Zitka O., Galiova M., Adam V., Kaiser J. et al. 2010 Determination of plant thiols by liquid chromatography coupled with coulometric and amperometric detection in lettuce treated by lead(ii) ions. Electroanalysis 22, 1248–1259.

    Article  CAS  Google Scholar 

  • Dixon D. P., Cole D. J. and Edwards R. 2000 Characteristics of a zeta class GSTs from Arabidopsis thaliana with a putative role in tyrosine catabolism. Arch. Biochem. Biophys. 384, 407–412.

    Article  CAS  PubMed  Google Scholar 

  • Dixon D. P., Lapthorn A. and Edwards R. 2002 Plant glutathione transferases. Genome Biol. 3. REVIEWS3004.

  • Edwards R. and Dixon D. P. 2000 The role of glutathione transferases in herbicide metabolism. In Herbicides and their mechanisms of action, pp. 33–71. Sheffield Academic Press, Sheffield, UK.

  • Edwards R. and Dixon D. P. 2005 Plant glutathione transferases. Methods Enzymol. 401, 169–186.

    Article  CAS  PubMed  Google Scholar 

  • Frova C. 2003 The plant glutathione transferase gene family: genomic structure, functions, expression and evolution. Physiol. Plant 119, 469–479.

    Article  CAS  Google Scholar 

  • Hall T. A. 1999 BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows95/98/NT. Nucleic Acids Symposium Ser. 41, 95–98.

    CAS  Google Scholar 

  • Itzhaki H. and Woodson W. R. 1993 Characterization of an ethylene-responsive glutathione S-transferase gene cluster in carnation. Plant Mol. Biol. 22, 43–58.

    Article  CAS  PubMed  Google Scholar 

  • Kampranis S. C., Damianova R., Atallah M., Toby G., Kondi G., Tsichlis P. N. and Makris A. M. 2000 A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast . J. Biol. Chem. 275, 29207–29216.

    Article  CAS  PubMed  Google Scholar 

  • Kang G. Z., Li G. Z., Liu G. Q., Xu W., Peng X. Q., Wang C. Y. et al. 2013 Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate–glutathione cycle. Biol. Plant 57, 718–724.

    Article  CAS  Google Scholar 

  • McGonigle B., Keeler S. J., Lau S. M, Koeppe M. K and O’Keefe D. P. 2000 A genomic approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize. Plant Physiol. 124, 1105–1120.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meyer Jr R. C., Goldsbrough P. B. and Woodson W. R. 1991 An ethylene-responsive gene from carnation encodes a protein homologous to glutathione S-transferases. Plant Mol. Biol. 17, 277–281.

    Article  CAS  Google Scholar 

  • Mueller L. A., Goodman C. D., Silady R. A. and Walbot V. 2000 AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol. 123, 1561–1570.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Naliwajski M. R. and Sklodowska M 2014 The oxidative stress and antioxidant systems in cucumber cells during acclimation to salinity. Biol. Plant 58, 47–54.

    Article  CAS  Google Scholar 

  • Oztetik E. 2008 Tale of plant glutathione S-transferases: since 1970. Bot. Rev. 74, 419–437.

    Article  Google Scholar 

  • Rennenberg H. 1982 Glutathione metabolism and possible biological roles in higher plants. Phytochemistry 21, 2771–2781.

    Article  CAS  Google Scholar 

  • Ridnour L. A., Winters R. A. and Spitz D. R. 1999 Measurement of glutathione, glutathione disulfide and other thiols in mammalian cell and tissue homogenates using high-performance liquid chromatography separation of N-(1-pyrenyl) maleimide derivatives. Methods Enzymol. 299, 258–267.

    Article  CAS  PubMed  Google Scholar 

  • Roxas V. P., Smith Jr R. K., Allen E. R and Allen R. D. 1997 Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat. Biotechnol. 15, 988–991.

    Article  CAS  PubMed  Google Scholar 

  • Sheehan D., Meade G., Foley V. and Dowd C. A. 2001 Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J. 360, 1–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith I. K., Polle A. and Rennenberg H. 1990 Glutathione. In Stress responses in plants: adaptation acclimation mechanisms. (ed. R. G. Alscher and J. R. Cumming). pp. 201–215. Wiley, New York, USA.

  • Soranzo N., Sari Gola M., Mizzi L., De Toma G. and Frova C. 2004 Organisation and structural evolution of the rice glutathione S-transferase gene family. Mol. Genet. Genomics 271, 511–521.

    Article  CAS  PubMed  Google Scholar 

  • Subramaniam K., Ye Z., Buechley G., Shaner G., Solomos T. and Ueng P. P. 1999 Isolation of a zeta class wheat glutathione S-transferase gene. Biochim. Biophys. Acta 1447, 348–356.

    Article  CAS  PubMed  Google Scholar 

  • Thom R., Dixon D. P., Edwards R., Cole D. J. and Lapthorn A. 2001 The structure of a zeta class glutathione S-transferase from A. thaliana: characterization of a GST with novel active site architecture and a putative role in tyrosine catabolism. J. Mol. Biol. 308, 949–962.

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya T., Takesawa T., Kanzaki H. and Nakamura I. 2004 Genomic structure and differential expression of two tandem-arranged GSTZ genes in rice. Gene 335, 141–149.

    Article  CAS  PubMed  Google Scholar 

  • Wagner U., Edwards R., Dixon D. P. and Mauch F. 2002 Probing the diversity of the Arabidopsis GST gene family. Plant Mol. Biol. 49, 515–532.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z. Y., Song F. B., Cai H., Zhu M. Y., Bai X. and Ji W. 2012 Over-expressing GsGST14 from Glycine soja enhances alkaline tolerance of transgenic Medicago sativa. Biol. Plant 56, 516– 520.

    Article  CAS  Google Scholar 

  • Zeng Q. Y. and Wang X. R. 2006 Divergence in structure and function of tau class glutathione transferase from Pinus tabulaeformis, P. yunnanensis and P. densata. Biochem. Syst. Ecol. 34, 678–690.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Prof. Heinz Rennenberg and Dr Stanislav Kopriva from Forest Botanic and Tree Physiology Institute, Albert-Ludwigs University, Freiburg, Germany, for providing the initial EST sequences and their help in Northern blot and glutathione assays. Dr Elif Oztetik was supported by Tubitak short term fellowship. This work was financially supported by University of Anadolu Reseach Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. ALPER.

Additional information

[Oztetik E., Kockar F., Alper M. and Iscan M. 2015 Molecular characterization of zeta class glutathione S-transferases from Pinus brutia Ten. J. Genet. 94, xx–xx]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

OZTETIK, E., KOCKAR, F., ALPER, M. et al. Molecular characterization of zeta class glutathione S-transferases from Pinus brutia Ten.. J Genet 94, 417–423 (2015). https://doi.org/10.1007/s12041-015-0538-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-015-0538-5

Keywords

Navigation