Skip to main content
Log in

Cytosine hypomethylation at CHG and CHH sites in the pleiotropic mutants of Mendelian inheritance in Catharanthus roseus

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The 5S and 18S rDNA sequences of Catharanthus roseus cv ‘Nirmal’ (wild type) and its leafless inflorescence (lli), evergreen dwarf (egd) and irregular leaf lamina (ill) single mutants and lli egd, lli ill and egd ill double mutants were characterized. The lli, egd and ill mutants of Mendelian inheritance bore the names after their most conspicuous morphological feature(s). They had been chemically induced and isolated for their salt tolerance. The double mutants were isolated as morphological segregants from crosses between single mutants. The morphological features of the two parents accompanied salt tolerance in the double mutants. All the six mutants were hypomethylated at repeat sequences, upregulated and downregulated for many genes and carried pleiotropic alterations for several traits. Here the 5S and 18S rDNAs of C. roseus were found to be relatively low in cytosine content. Cytosines were preponderantly in CG context (53%) and almost all of them were methylated (97%). The cytosines in CHH and CHG (where H = A, T or C) contexts were largely demethylated (92%) in mutants. The demethylation was attributable to reduced expression of RDR2 and DRM2 led RNA dependant DNA methylation and CMT3 led maintenance methylation pathways. Mutants had gained some cytosines by substitution of C at T sites. These perhaps arose on account of errors in DNA replication, mediated by widespread cytosine demethylation at CHG and CHH sites. It was concluded that the regulation of cytosine methylation mechanisms was disturbed in the mutants. ILL, EGD and LLI genes were identified as the positive regulators of other genes mediating the RdDM and CMT3 pathways, for establishment and maintenance of cytosine methylation in C. roseus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Agius F., Kapoor A. and Zhu J. K. 2006 Role of the Arabidopsis DNA glycosylases/lyase ROS1 in active DNA demethylation. Proc. Natl. Acad. Sci. USA 103, 11796–11801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennetzen J. L. and Zhu J. K. 2011 Epigenetics of the epigenome. Curr. Opin. Plant Biol. 14, 113–115.

    Article  PubMed  Google Scholar 

  • Bhutani N., Burns D. M. and Blau H. M. 2011 DNA demethylation dynamics. Cell 146, 866–872.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blevins T., Pontes O., Pikaard C. S. and Meins Jr F. 2009 Heterochromatic siRNAs and DDM1 independently silence aberrant 5S rDNA transcripts in Arabidopsis. PLoS One 4, e5932.

    Article  Google Scholar 

  • Cao X. and Jacobsen S. E. 2002 Role of the Arabidopsis DRM methyltransferase in de novo DNA methylation and gene silencing. Curr. Biol. 12, 1138–1144.

    Article  CAS  PubMed  Google Scholar 

  • Carr I. M., Valleley E. M. A., Cordery S. F., Markham A. F. and Bonthron D. T. 2007 Sequence analysis and editing for bisulphite genomic sequencing projects. Nucleic Acids Res. 35, e79.

    Article  Google Scholar 

  • Chan S. W., Henderson I. R., Zhang X., Shah G., Chien J. S. and Jacobsen S. E. 2006 RNAi, DRD1 and histone methylation actively target developmentally important non-CG DNA methylation in Arabidopsis. PLos. Genet. 2, e83.

    Article  Google Scholar 

  • Chaudhary S., Sharma V., Prasad M., Bhatia S., Tripathi B. N., Yadav G. and Kumar S. 2011 Characterization and genetic linkage mapping of the horticulturally important mutation leafless inflorescence (lli) in periwinkle Catharanthus roseus. Sci. Hort. 129, 142–153.

    Article  CAS  Google Scholar 

  • Chaudhary S., Pandey R., Sharma V., Tripathi B. N. and Kumar S. 2013 Detection and mapping of QTLs affecting contents of pharmaceutical alkaloids in leaf and root of Catharanthus roseus. Agric. Res. 2, 9–23.

    Article  CAS  Google Scholar 

  • Choi S. H., Byun H., Kwan J. M., Issa J. J. and Yang A. S. 2007 Hydroxycarbamide in combination with azacitidine or decitabine is antagonistic on DNA methylation inhibition. Br. J. Haematol. 138, 616–623.

    Article  CAS  PubMed  Google Scholar 

  • Choi Y., Gehring M., Johnson L., Hannon M., Harada J. J., Goldberg R. B. et al. 2002 DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110, 33–42.

    Article  CAS  PubMed  Google Scholar 

  • Dowen R. H., Pelizzola M., Schmitz R. J., Lister R., Dowen J. M., Nery J. R. et al. 2012 Widespread dynamic DNA methylation in response to biotic stress. Proc. Natl. Acad. Sci. USA 109, 2183–2191.

    Article  Google Scholar 

  • Felsenstein J. 1989 PHYLIP – phylogeny inference package (version 3.2). Cladistics 5, 164–166.

    Google Scholar 

  • Finnegan E. J. 1996 The role of DNA methylation in plant development. In Epigenetic mechanisms of gene regulation (ed. V. E. A. Russo, R. A. Martienssen and A. D. Riggs), pp. 127–140. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.

    Google Scholar 

  • Fulnecek J., Matyásek R. and Kovarík A. 2002 Distribution of 5-methylcytosine residues in 5S rRNA genes in Arabidopsis thaliana and Secale cereale. Mol. Genet. Genomics 268, 510–517.

    Article  CAS  PubMed  Google Scholar 

  • Garcia S., Crhák Khaitová L. and Kovařík A. 2012 Expression of 5S rRNA genes linked to 35S rDNA in plants, their epigenetic modification and regulatory element divergence. BMC Plant Biol. 12, 95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Aguilar M., Michand C., Leblanc O. and Grimanelli D. 2010 Inactivation of a DNA methylation pathway in maize reproductive organs results in apomixis-like phenotypes. Plant Cell 22, 3249–3667.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gong Z., Morales-Ruiz T., Ariza R. R., Roldan-Arjona T., David L. and Zhu J. K. 2002 ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111, 803–814.

    Article  CAS  PubMed  Google Scholar 

  • He G., Elling A. A. and Deng X. W. 2011 The epigenome and plant development. Annu. Rev. Plant Biol. 62, 411–435.

    Article  CAS  PubMed  Google Scholar 

  • Huen M. S., Sy S. M., van Deursen J. M. and Chen J. 2008 Direct interaction between SET8 and proliferating cell nuclear antigen couples H4-K20 methylation with DNA replication. J. Biol. Chem. 283, 11073–11077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huson D. H. and Scornavacca C. 2012 Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst. Biol. 61, 1061–1067.

    Article  PubMed  Google Scholar 

  • Jackson S. P. and Bartek J. 2009 The DNA-damage response in human biology and disease. Nature 461, 1071–1078.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johannes F., Porcher E., Teixeira F. K., Saliba-Colombani V., Simon M., Agier N. et al. 2009 Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet. 5, e1000530.

    Article  Google Scholar 

  • Kankel M. W., Rasey D. E., Stoke T. L., Flowers S. K., Haag J. R., Jeddeloh J. A. et al. 2003 MET1 cytosine methyltransferase mutants. Genetics 163, 1109–1122.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karan R., DeLeon T., Biradar H. and Subudhi P. K. 2012 Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PLoS One 7, e40203.

    Article  Google Scholar 

  • Kulkarni R. N., Baskaran K., Chandrashekhara R. S. and Kumar S. 1999 Inheritance of morphological traits of periwinkle mutants with modified contents and yields of leaf and root alkaloids. Plant Breed. 118, 71–74.

    Article  CAS  Google Scholar 

  • Kulkarni R. N., Baskaran K., Chandrashekara R. S., Khanuja S. P. S., Darokar M. P., Shasany A. K. et al. 2003 ‘Dhawal’, a high alkaloid producing periwinkle plant. US Patent No. 6,548,746.

  • Kumar S., Rai S. P., Rai S. K., Singh D. V., Srivastava S. and Mishra R. K. 2007 Plant variety of Catharanthus roseus named ‘lli’. US Patent PP18315.

  • Kumar S., Chaudhary S., Kumari R., Sharma V. and Kumar A. 2012 Development of improved horticultural genotypes characterized by novel over-flowering inflorescence trait in periwinkle, Catharanthus roseus. Proc. Natl. Acad. Sci. India Sect. B 82, 399–404.

    Article  Google Scholar 

  • Kumar S., Kumari R., Sharma V. and Sharma V. 2013 Roles and establishment, maintenance and erasing of the epigenetic cytosine methylation marks in plants. J. Genet. doi: 10.1007/s12041-013-0273-8.

    Google Scholar 

  • Kumari R., Chaudhary S., Mishra R. K., Rai S. P., Rai S. K., Sharma V. et al. 2010 Regulation of lifespan by the LLI and EGD genes in the perennial plant species, Catharanthus roseus. Proc. Indian Natl. Sci. Acad. 76, 27–39.

    CAS  Google Scholar 

  • Kumari R., Sharma V., Sharma V. and Kumar S. 2013 Pleiotropic phenotypes of the salt tolerant and cytosine hypomethylated leafless inflorescence, evergreen dwarf and irregular leaf lamina mutants of Catharanthus roseus possessing Mendelian inheritance. J. Genet. doi: 10.1007/s12041-013-0271-x.

    Google Scholar 

  • Li L. C. and Dahiya R. 2002 MethPrimer: designing primers for methylation PCRs. Bioinformatics 18, 1427–1431.

    Article  CAS  PubMed  Google Scholar 

  • Lindroth A. M., Cao X., Jackson J. P., Zilberman D., McCallum C. M., Henikoff S. and Jacobsen S. E. 2001 Requirement of CHROMOMETHYLASE 3 for maintenance of CpXpG methylation. Science 202, 2077–2080.

    Article  Google Scholar 

  • Lira-Medeiros C. F., Parisod C., Fernandes R. A., Mata C. S., Cardosa M. A. and Ferreira P. C. 2010 Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One 5, e10326.

    Article  Google Scholar 

  • Luna E., Bruce T. J., Roberts M. R., Flors V. and Ton J. 2012 Next-generation systemic acquired resistance. Plant Physiol. 158, 844–853.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mathieu O., Yukawa Y., Prieto J., Vaillant I., Sugiura M. and Tourmente S. 2003 Identification and characterization of transcription factor III A and ribosomal protein L5 from Arabidopsis thaliana. Nucleic Acids Res. 31, 2424–2433.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mazin A. L. 1993 The mechanism of replicative and post-replicative DNA methylation as a generator of mutations in a cell. Mol. Biol. (Mosk) 27, 965–979.

    CAS  Google Scholar 

  • Mishra P., Uniyal G. C., Sharma S. and Kumar S. 2001 Pattern of diversity for morphological and yield related traits among the periwinkle Catharanthus roseus accessions collected from in and around Indian subcontinent. Genet. Res. Crop Evol. 48, 273–286.

    Article  Google Scholar 

  • Ortega-Galisteo A. P., Morales-Ruiz T., Ariza R. R. and Roldan-Arjona T. 2008 Arabidopsis DEMETER-LIKE proteins DML2 and DML3 are required for appropriate distribution of DNA methylation marks. Plant Mol. Biol. 67, 671–681.

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer G. P. 2006 Mutagenesis at methylated CpG sequences. CTMI 301, 259–281.

    CAS  Google Scholar 

  • Rai S. P., Luthra R. and Kumar S. 2003 Salt-tolerant mutants in glycophytic salinity response (GSR) genes in Catharanthus roseus. Theor. Appl. Genet. 106, 221–230.

    CAS  PubMed  Google Scholar 

  • Ream T. S., Haag J. R., Wierzbicki A. T., Nicora C. D., Norbeck A. D., Zhu J. K. et al. 2009 Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II. Mol. Cell 33, 192–203.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reinders J., Wulff B. B., Mirouze M., Mari-Ordonez A., Dapp M., Rozhon W. et al. 2009 Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev. 23, 939–950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saghai-Maroof M. A., Soliman K. M., Jorgesen R. A. and Allard R. W. 1984 Ribosomal DNA spacer-length polymorphisms in barly Mendelian inheritance, chromosomal location and population dynamics. Proc. Natl. Acad. Sci. USA 81, 8014– 8018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki T., Kobayashi A., Saze H. and Kakutani T. 2012 RNAi-independent de novo DNA methylation revealed in Arabidopsis mutants of chromatin remodeling gene DDM1. Plant J. 70, 750–758.

    Article  CAS  PubMed  Google Scholar 

  • Satheeshkumar P. K. and Gupta A. K. 2012 Cloning of Casuarina equisetifolia chloroplast ribosomal RNA (rRNA) genes and its application in phylogenetic studies. Res. Plant Biol. 2, 30–37.

    Google Scholar 

  • Saze H., Tsugane K., Kanno T. and Nishimura T. 2012 DNA methylation in plants: relationship to small RNAs and histone modifications and functions in transposon inactivation. Plant Cell Physiol. 53, 766–784.

    Article  CAS  PubMed  Google Scholar 

  • Sharma V., Chaudhary S., Srivastava S., Pandey R. and Kumar S. 2012 Characterization of variation and quantitative trait loci related to terpenoid indole alkaloid yield in a recombinant inbred line mapping population of Catharanthus roseus. J. Genet. 91, 49–69.

    Article  CAS  PubMed  Google Scholar 

  • Slaughter A., Daniel X., Flors V., Luna E., Hohn B. and Mauch-Mani B. 2012 Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol. 158, 835–843.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Small R. L., Cronn R. C. and Wendel J. F. 2004 Use of nuclear genes for phylogeny reconstruction in plants. Aust. Syst. Bot. 17, 145–170.

    Article  CAS  Google Scholar 

  • Song Y., Ji D., Li S., Wang P., Li Q. and Xiang F. 2012 The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean. PLoS One 7, e41274.

    Article  Google Scholar 

  • Teixeira F. K., Heredia F., Sarazin A., Roudier F., Boccara M., Ciaudo C. et al. 2009 A role for RNAi in the selective correction of DNA methylation defects. Science 323, 1600–1604.

    Article  CAS  PubMed  Google Scholar 

  • Vaillant I., Tutois S., Jasencakova Z., Douet J., Schubert I. and Tourmente S. 2008 Hypomethylation and hypermethylation of the tandem repetitive 5S rRNA genes in Arabidopsis. Plant J. 54, 299–309.

    Article  CAS  PubMed  Google Scholar 

  • Walsh C. P. and Xu G. L. 2006 Cytosine methylation and DNA repair. Curr. Top. Microbiol. Immunol. 301, 283–315.

    CAS  PubMed  Google Scholar 

  • Wada Y., Miyamoto K., Kusano H. and Sano H. 2004 Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Mol. Genet. Genomics 271, 658–666.

    Article  CAS  PubMed  Google Scholar 

  • Wicke S., Schneeweiss G. M., dePamphilis C. W., Muller K. F. and Quandt D. 2011 The evolution of the plastid chromosome in land plants: gene content, gene order and gene function. Plant Mol. Biol. 76, 273–297.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang A. S., EsteÂcio M. R. H., Doshi K., Kondo Y., Tajara E. H. and Issa J. J. 2004 A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res. 32, e38.

    Article  Google Scholar 

  • Zhang X., Mathews C. K. 1994 Effect of DNA cytosine methylation upon deamination-induced mutagenesis in a natural target sequence in duplex DNA. J. Biol. Chem. 269, 7066–7069.

    CAS  PubMed  Google Scholar 

  • Zhu J. K. 2009 Active DNA methylation mediated by DNA glycosylases. Ann. Rev. Genet. 43, 143–166.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Indian National Science Academy and Council of Scientific and Industrial Research are thanked for grant of scientistship schemes to SK, Department of Biotechnology is thanked for research grant for work on periwinkle and for postgraduate fellowship to RK, Director of NIPGR is thanked for providing research facilities and SKA Institution for Research, Education and Development is thanked for grant of a postgraduate fellowship to VS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SUSHIL KUMAR.

Additional information

[Kumari R., Yadav G., Sharma V., Sharma V. and Kumar S. 2013 Cytosine hypomethylation at CHG and CHH sites in the pleiotropic mutants of Mendelian inheritance in Catharanthus roseus. J. Genet. 92, xx–xx]

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 1.12 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

KUMARI, R., YADAV, G., SHARMA, V. et al. Cytosine hypomethylation at CHG and CHH sites in the pleiotropic mutants of Mendelian inheritance in Catharanthus roseus . J Genet 92, 499–511 (2013). https://doi.org/10.1007/s12041-013-0300-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-013-0300-9

Keywords

Navigation