Skip to main content
Log in

An integrative bioinformatics pipeline for the genomewide identification of novel porcine microRNA genes

  • Research Note
  • Published:
Journal of Genetics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

References

  • Altuvia Y., Landgraf P., Lithwick G., Elefant N., Pfeffer S., Aravin A. et al. 2005 Clustering and conservation patterns of human microRNAs. Nucleic Acids Res. 33, 2697–2706.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baev V., Daskalova E. and Minkov I. 2009 Computational identification of novel microRNA homologs in the chimpanzee genome. Comput. Biol. Chem. 33, 62–70.

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y. and Hochberg Y. 1995 Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300.

    Google Scholar 

  • Chen J., Sun M., Kent W. J., Huang X., Xie H., Wang W. et al. 2004 Over 20% of human transcripts might form sense–antisense pairs. Nucleic Acids Res. 32, 4812–4820.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • David P. B. 2004 MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.

    Article  Google Scholar 

  • Dreszer T. R., Karolchik D., Zweig A. S., Hinrichs A. S., Raney B. J., Kuhn R. M. et al. 2012 The UCSC Genome Browser database: extensions and updates 2011. Nucleic Acids Res. 40, 918–923.

    Article  Google Scholar 

  • Flicek P., Amode M. R., Barrell D., Beal K., Brent S., Carvalho-Silva D. et al. 2012 Ensembl 2012. Nucleic Acids Res. 40, 84–90.

    Article  Google Scholar 

  • Gitlin L., Stone J. K. and Andino R. 2005 Poliovirus escape from RNA interference: short interfering RNA-target recognition and implications for therapeutic approaches. J. Virol. 79, 1027–1035.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goecks J., Nekrutenko A., Taylor J. and Team G. 2010 Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11, R86.

    Article  Google Scholar 

  • Griffiths-Jones S., Saini H. K., van Dongen S. and Enright A. J. 2008 miRBase: tools for microRNA genomics. Nucleic Acids Res. 36, 154–158.

    Article  Google Scholar 

  • Jiang P., Wu H., Wang W., Ma W., Sun X. and Lu Z. 2007 MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res. 35, 339–344.

    Article  Google Scholar 

  • Kent W. J. 2002 BLAT–the BLAST-like alignment tool. Genome Res. 12, 656–664.

    CAS  PubMed  Google Scholar 

  • Lagos-Quintana M., Rauhut R., Lendeckel W. and Tuschl T. 2001 Identification of novel genes coding for small expressed RNAs. Science 294, 853–858.

    Article  CAS  PubMed  Google Scholar 

  • Lagos-Quintana M., Rauhut R., Meyer J., Borkhardt A. and Tuschl T. 2003 New microRNAs from mouse and human. RNA 9, 175–179.

    Article  CAS  PubMed  Google Scholar 

  • Legendre M., Lambert A. and Gautheret D. 2005 Profile-based detection of microRNA precursors in animal genomes. Bioinformatics 21, 841–845.

    Article  CAS  PubMed  Google Scholar 

  • Li G., Li Y., Li X., Ning X., Li M. and Yang G. 2011 MicroRNA identity and abundance in developing swine adipose tissue as determined by solexa sequencing. J. Cell Biochem. 112, 1318–1328.

    Article  CAS  PubMed  Google Scholar 

  • Lian C., Sun B., Niu S., Yang R., Liu B., Lu C. et al. 2012 A comparative profile of the microRNA transcriptome in immature and mature porcine testes using Solexa deep sequencing. FEBS J. 279, 964–975.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y., Li M., Ma J., Zhang J., Zhou C., Wang T. et al. 2013 Identification of differences in microRNA transcriptomes between porcine oxidative and glycolytic skeletal muscles. BMC Mol. Biol. 14, 7.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lorenz R., Bernhart S., Höner zu Siederdissen C., Tafer H., Flamm C., Stadler P. et al. 2011 ViennaRNA Package 2.0. Algorithm. Mol. Biol. 6, 26.

    Article  Google Scholar 

  • Mendes N., Freitas A. and Sagot M. F. 2009 Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res. 37, 2419–2433.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mendes N., Freitas A., Vasconcelos A. and Sagot M. F. 2010 Combination of measures distinguishes pre-miRNAs from other stem-loops in the genome of the newly sequenced Anopheles darlingi. BMC Genomics 11, 529.

    Article  PubMed Central  PubMed  Google Scholar 

  • Olive V., Jiang I. and He L. 2010 mir-17-92, a cluster of miRNAs in the midst of the cancer network. Int. J. Biochem. Cell Biol. 42, 1348.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez A., Griffiths-Jones S., Ashurst J. L. and Bradley A. 2004 Identification of mammalian microRNA host genes and transcription units. Genome Res. 14, 1902–1910.

    Article  CAS  PubMed  Google Scholar 

  • Thatcher E. J., Bond J., Paydar I. and Patton J. G. 2008 Genomic organization of zebrafish microRNAs. BMC Genomics 9, 253.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang B., Pan X. and Stellwag E. J. 2008 Identification of soybean microRNAs and their targets. Planta 229, 161–182.

    Article  CAS  PubMed  Google Scholar 

  • Zhou M., Wang Q., Sun J., Li X., Xu L., Yang H. et al. 2009 In silico detection and characteristics of novel microRNA genes in the Equus caballus genome using an integrated ab initio and comparative genomic approach. Genomics 94, 125–131.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant no. 31072115), the opening foundation of the State Key Laboratory of Biology Macromolecule of the Institute of Biophysics, Chinese Academy of Sciences (grant no. O5SY021107), and a preparatory project sponsored by the National Ministry of Science and Technology of China of the First Batch in the Basic Research Category of the National Program of Science and Technology in the Field of Countryside for 2011 to 2015 (preparatory project no. NC2010CD0178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DELI ZHANG.

Additional information

[Fang W., Zhou N., Li D., Chen Z., Jiang P. and Zhang D. 2013 An integrative bioinformatics pipeline for the genomewide identification of novel porcine microRNA genes. J. Genet. 92, xx–xx]

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 3.42 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

FANG, W., ZHOU, N., LI, D. et al. An integrative bioinformatics pipeline for the genomewide identification of novel porcine microRNA genes. J Genet 92, 587–593 (2013). https://doi.org/10.1007/s12041-013-0294-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-013-0294-3

Keywords

Navigation