Skip to main content
Log in

The evolution and utility of ribosomal ITS sequences in Bambusinae and related species: divergence, pseudogenes, and implications for phylogeny

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Ribosomal internal transcribed spacer (ITS) sequences are commonly used for phylogenetic reconstruction because they are highly reiterated as components of rDNA repeats, and hence are often subject to rapid homogenization through concerted evolution. Concerted evolution leads to intragenomic uniformity of repeats even between loci on nonhomologous chromosomes. However, a number of studies have shown that the ITS polymorphism within individuals is quite common. The molecular systematics of Bambusinae and related species were recently assessed by different teams using independently generated ITS sequences, and the results disagreed in some remarkable features. Here we compared the ITS sequences of the members of Bambusa s. l., the genera Dendrocalamus, Dinochloa, Gigantochloa, Guadua, Melocalamus, Monocladus, Oxytenanthera, Thyrsostachys, Pleioblastus, Pseudosasa and Schizostachyum. We have reanalysed the ITS sequences used by different research teams to reveal the underlying patterns of their different results. After excluding the sequences suspected to represent paralogous loci, a phylogenetic analysis of the subtribe Bambusinae species were performed using maximum parsimony and maximum-likelihood methods. The implications of the findings are discussed. The risk of incorporating ITS paralogues in plant evolutionary studies that can distort the phylogenetic signal should caution molecular systematists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Álvarez I. and Wendel J. F. 2003 Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenet. Evol. 29, 417–434.

    Article  PubMed  Google Scholar 

  • Bailey C. D., Carr T. G., Harris S. A. and Hughes C. E. 2003 Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Mol. Phylogenet. Evol. 29, 435–455.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin B. G. 1993 Molecular phylogenetics of Calycadenia (Compomtae) based on ITS sequences of nuclear ribosomal DNA: choromosomal and morphological evolution reexmained. Am. J. Bot. 80, 220–238.

    Article  Google Scholar 

  • Baldwin B. G., Sanderson M. J. and Porter J. M. 1995 The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann. Mol. Bot. Gard. 82, 247–277.

    Article  Google Scholar 

  • Bandelt H. J., Fortser P. and Rohl A. 1999 Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48.

    Article  PubMed  CAS  Google Scholar 

  • Buckler E. S. IV, Ippolito A. and Holtsford T. P. 1997 The evolution of ribosomal DNA: divergent paralogues and phylogenetic implications. Genetics 145, 821–832.

    PubMed  CAS  Google Scholar 

  • Chia L. C. and Fung H. L. 1996 Bambusa and Leleba. In Flora reipublicae popularis sinicae (ed. P. C. Keng and Z. P. Wang), vol. 9, pp. 48–114. Science Press, Beijing, China (in Chinese).

    Google Scholar 

  • Clayton W. D. and Renvoize S. A. 1986 Genera graminum-grasses of the world. Royal Botanic Gardens, Kew, UK.

    Google Scholar 

  • Denduangboripant J. and Cronk Q. C. 2000 High intraindividual variation in internal transcribed spacer sequences in Aeschynanthus (Gesneriaceae): implications for phylogenetics. Proc. Biol. Sci. 267, 1407–1415.

    Article  PubMed  CAS  Google Scholar 

  • Feliner G. N., Larena B. G. and Aguilar J. F. 2004 Fine-scale geographical structure, intra-individual polymorphism and recombination in nuclear ribosomal internal transcribed spacers in Armefia (Plumbaginaceae). Ann. Bot. 93, 189–200.

    Article  Google Scholar 

  • Felsenstein J. 1985 Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.

    Article  Google Scholar 

  • Göer M. and Grimm G. W. 2008 General functions to transform associate data to host data, and their use in phylogenetic inference from sequences with intraindividual variability. BMC Evol. Biol. 8, 86.

    Article  Google Scholar 

  • Grimm G. W. and Denk T. 2008 ITS evolution in Platanus: homoeologues, pseudogenes, and ancient hybridization. Ann. Bot. 101, 403–419.

    Article  PubMed  CAS  Google Scholar 

  • Hall T. A. 1999 BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids. Symp. Ser. 41, 95–98.

    CAS  Google Scholar 

  • Hamby R. K. and Zimmer E. A. 1992 Ribosomal RNA as a phylogenetic tool in plant systematics. In Molecular systematics of plants (ed. P. S. Soltis, D. E. Soltis and J. J. Doyle), pp. 50–101. Chapman and Hall, New York, USA.

    Chapter  Google Scholar 

  • Hartmann S., Nason J. D. and Bhattacharya D. 2001 Extensive ribosomal DNA genic variation in the columnar cactus Lophocereus. J. Mol. Evol. 53, 124–134.

    PubMed  CAS  Google Scholar 

  • Holttum R. E. 1956 The classification of bamboos. Phytomorphology 6, 73–90.

    Google Scholar 

  • Hsiao C., Chatterton N. J. and Asay K. H. 1995 Molecular phylogeny of the Pooideae (Poaceae) based on nuclear rDNA (ITS) sequences. Theor. Appl. Genet. 90, 389–398.

    Article  CAS  Google Scholar 

  • Kim S. T., Sultan S. E. and Donoghue M. J. 2008 Allopolyploid speciation in Persicaria (Polygonaceae): insights from a low-copy nuclear region. Proc. Natl. Acad. Sci. USA 105, 12370–12375.

    Article  PubMed  CAS  Google Scholar 

  • Kimura M. 1980 A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Kita Y. and Ito M. 2000 Nuclear ribosomal ITS sequences and phylogeny in East Asian Aconitum subgenus Aconitum (Ranunculaceae), with special reference to extensive polymorphism in individual plants. Plant Syst. Evol. 225, 1–13.

    Article  CAS  Google Scholar 

  • Li D. Z. 1997 The flora of China Bambusoideae project: problems and current understanding of bamboo taxonomy in China. In The bamboos (ed. G. P. Chapman), pp. 61–81. Academic Press, London, UK.

    Google Scholar 

  • Li D. Z. and Hsueh C. J. 1988 A study on the genus Dendrocalamus Nees from China. J. Bamboo Res. 7, 1–19 (in Chinese).

    Google Scholar 

  • Li W. H. and Graur D. 1991 Fundamentals of molecular evolution. Sinauer, Sunderland, USA.

    Google Scholar 

  • Lin W. T. 1989 Comments on the genus Dendrocalamus Nees from China. J. Bamboo Res. 8, 30–35 (in Chinese).

    Google Scholar 

  • Liu Q., Ge S. and Tang H. 2006 Phylogenetic relationships in Elymus (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. New Phytol. 170, 411–420.

    Article  PubMed  CAS  Google Scholar 

  • Loh J. P., Kiew R., Set O., Gan L. H. and Gan Y. Y. 2000 A study of genetic variation and relationships within the bamboo subtribe Bambusinae using amplified fragment length polymorphism. Ann. Bot. 85, 607–612.

    Article  CAS  Google Scholar 

  • Mayol M. and Rosselló J. A. 2001 Why nuclear ribosomal DNA spacers (ITS) tell different stories in Quercus. Mol. Phylogenet. Evol. 19, 167–176.

    Article  PubMed  CAS  Google Scholar 

  • McClure F. A. 1940 New genera and species of Bambusaceae from Eastern Asia. Lingnan Univ. Sci. Bull. 9, 66–67.

    Google Scholar 

  • Muir G. and Schlötterer C. 1999 Limitations to the phylogenetic use of ITS sequences in closely related species and populations - a case study in Quercus petraea (Matt.) Liebl, Chapter 11. In Which DNA marker for which purpose? Final Compendium of the Research Project: Development, optimization and validation of molecular tools for assessment of biodiversity in forest trees in European Union DGXII Biotechnology FWIV Research Program Molecular Tools for Biodiversity (ed. E. M. Gillet) (http://webdoc.sub.gwdg.de/ebook/y/1999/whichmarker/index.htm).

  • Nicholas K. B., Nicholas Jr. H. B. and Deerfield D. W. II. 1997 GeneDoc: analysis and visualization of genetic variation. Embnet. News 4, 1–4.

    Google Scholar 

  • Nieto-Feliner G. and Rossselló J. A. 2007 Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Mol. Phylogenet. Evol. 44, 911–919.

    Article  PubMed  CAS  Google Scholar 

  • Ohrnberger D. 1999 The Bamboos of the World, pp. 250–280, Elsevier, Amsterdam, Holland.

    Google Scholar 

  • Pattanaik S. and Hall J. B. 2009 Species relationships in Dendrocalamus inferred from AFLP Fingerprints, volume 5, pp. 27–40. VIII World Bamboo Congress Proceedings, Thailand.

  • Pilotti M., Brunetti B. and Tizzani L. 2009 Platanus×acerifolia genotypes surviving to inoculation with Ceratocystis platani (the agent of canker stain): first screening and molecular characterization. Euphytica 169, 1–7.

    Article  CAS  Google Scholar 

  • Posada D. and Crandall K. A. 1998 Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.

    Article  PubMed  CAS  Google Scholar 

  • Ramanayake S. M. S. D., Meemaduma V. N. and Weerawardene T. E. 2007 Genetic diversity and relationships between nine species of bamboo in Sri Lanka, using Random Amplified Polymorphic DNA. Plant Syst. Evol. 269, 55–61.

    Article  CAS  Google Scholar 

  • Rosselló J. A., Cosín R. and Boscaiu M. 2006 Intragenomic diversity and phylogenetic systematics of wild rosemaries (Rosmarinus officinalis L. s.l., Lamiaceae) assessed by nuclear ribosomal DNA sequences (ITS). Plant Syst. Evol. 262, 1–12.

    Article  Google Scholar 

  • Rosselló J. A., Lázaro A. and Cosín R. 2007 A phylogeographic split in Buxus balearica (Buxaceae) as evidenced by nuclear ribosomal markers: when ITS paralogues are welcome. J. Mol. Evol. 64, 143–157.

    Article  PubMed  Google Scholar 

  • Sang T., Crawford D. J. and Sutessy T. F. 1995 Documentation of reticulate evolution in Paeonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc. Natl. Acad. Sci. USA 92, 6813–6817.

    Article  PubMed  CAS  Google Scholar 

  • Silva U. C. S., Rapini A., Liede-Schumann S. and Ribeiro P. L. 2012 Taxonomic considerations on Metastelmatinae (Apocynaceae) based on plastid and nuclear DNA. Syst. Bot. 37, 795–806.

    Article  Google Scholar 

  • Soderstrom T. R. and Ellis R. P. 1987 The position of bamboo genera and allies in a system of grass classification. In Grass systematics and evolution (ed. T. R. Soderstrom, K. W. Hilu, C. S. Campbell and M. E. Barkworth). Smithsonian Institution Press, Washington DC and London.

    Google Scholar 

  • Sun Y., Xia N. H. and Lin R. S. 2005 Phylogenetic analysis of Bambusa (Poaceae: Bambusoideae) based on internal transcribed spacer sequences of nuclear ribosomal DNA. Biochem. Genet. 43, 603–612.

    Article  PubMed  CAS  Google Scholar 

  • Sun Y., Xia N. H. and Stapleton C. M. A. 2006 Relationships between Bambusa species (Poaceae, Bambusoideae) revealed by random amplified polymorphic DNA. Biochem. Syst. Ecol. 34, 417–423.

    Article  CAS  Google Scholar 

  • Swofford D. L. 1998 PAUP* phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer, Sunderland, USA.

    Google Scholar 

  • Thompson J. D., Higgins D. G. and Gibson T. J. 1994 CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  • Volkov R. A., Borisjuk N. V. and Panchuk II. 1999 Elimination and rearrangement of parental rDNA in the alloteraploid nicotiana tabacum. Mol. Biol. Evol. 16, 311–320.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M., Ito M. and Kurita S. 1994 Chloroplast DNA phylogeny of Asian bamboos (Bambusoideae, Poaceae) and its systematic implication. J. Plant Res. 107, 253–261.

    Article  CAS  Google Scholar 

  • Watrous L. E. and Wheeler Q. D. 1981 The outgroup comparison method of character analysis. Syst. Zool. 30, 1–11.

    Article  Google Scholar 

  • Wendel J. F., Schnabel A. and Seelanan T. 1995 Bi-directional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc. Natl. Acad. Sci. USA 92, 280–284.

    Article  PubMed  CAS  Google Scholar 

  • Xia N. H. 1996 A study on the genus Bonia (Gramineae: Bambusoideae). Kew Bull. 51, 565–569.

    Article  Google Scholar 

  • Xia N. H., Jia L. Z., Li D. Z. and Stapleton C. 2006 Bambusa. In Flora of China (ed. Z. Y. Wu and P. H. Raven), vol. 22, pp. 9–38. Science Press, St Louis, USA.

    Google Scholar 

  • Yang H. Q., Yang J. B., Peng Z. H., Gao J., Yang Y. M., Peng S. and Li D. Z. 2008 A molecular phylogenetic and fruit evolutionary analysis of the major groups of the paleotropical woody bamboos (Gramineae: Bambusoideae) based on nuclear ITS, GBSSI gene and plastid trnL-F DNA sequences. Mol. Phylogenet. Evol. 48, 809–824.

    Article  PubMed  CAS  Google Scholar 

  • Yang Y. W., Lai K. N. and Tai P. Y. 1999 Molecular phylogenetics studies of Brassica, Rorippa, Arabidopsis, and allied genera based on the internal transcribed spacer region of 18s-25s rDNA. Mol. Phylogenet. Evol. 13, 455–462.

    Article  PubMed  CAS  Google Scholar 

  • Zhang D. and Sang T. 1999. Physical mapping of ribosomal RNA genes in Peonies (Paeonia, Paeoniaceae) by fluorescent in stiu hybridization: implications for phylogeny and concerted evolution. Am. J. Bot. 86, 735–735.

    Article  PubMed  CAS  Google Scholar 

  • Zhang L. B. and Ge S. 2007 Multilocus analysis of nucleotide variation and speciation in Oryza officinalis and its close relatives. Mol. Biol. Evol. 24, 769–783.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Agricultural Science and Technology Achievements Transformation Funds Project of the Ministry of Science and Technology of China (2010GB24320621) and Key Technology Research and Development Program of Sichuan Province (no. 10ZC1136). Hui-Xing Song was supported by Foundation of Sichuan Educational Committee (no. 11ZA083). We wish to thank two anonymous reviewers for helpful comments that improved the manuscript. This paper benefited from the careful review of Bernard R. Baum, Agriculture and Agri-Food Canada, Ottawa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QI-BING CHEN.

Additional information

[Song H.-X., Gao S.-P., Jiang M.-Y., Liu G.-L., Yu X.-F. and Chen Q.-B. 2012 The evolution and utility of ribosomal ITS sequences in Bambusinae and related species: divergence, pseudogenes, and implications for phylogeny. J. Genet. 91, xx–xx]

Rights and permissions

Reprints and permissions

About this article

Cite this article

SONG, HX., GAO, SP., JIANG, MY. et al. The evolution and utility of ribosomal ITS sequences in Bambusinae and related species: divergence, pseudogenes, and implications for phylogeny. J Genet 91, 129–139 (2012). https://doi.org/10.1007/s12041-012-0170-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-012-0170-6

Keywords

Navigation