Skip to main content

Advertisement

Log in

MicroRNA expression profiling in neurogenesis of adipose tissue-derived stem cells

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Adipose tissue-derived stem cells (ADSCs) are one population of adult stem cells that can self renew and differentiate into multiple lineages. Because of advantages in method and quantity of acquisition, ADSCs are gaining attention as an alternative source of bone marrow mesenchymal stem cells. In this study, we performed microRNA profiling of undifferentiated and of neurally-differentiated ADSCs to identify the responsible microRNAs in neurogenesis using this type of stem cell. MicroRNAs from four different donors were analysed by microarray. Compared to the undifferentiation control, we identified 39–101 microRNAs with more than two-fold higher expression and 3–9 microRNAs with two-fold lower expression. The identified microRNAs were further analysed in terms of gene ontology (GO) in relation with neurogenesis, based on their target mRNAs predicted by computational analysis. This study revealed the specific microRNAs involved in neurogenesis via microRNA microarray, and may provide the basic information for genetic induction of adult stem cell differentiation using microRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashjian P. H., Elbarbary A. S., Edmonds B., DeUgarte D., Zhu M., Zuk P. A. et al. 2003 In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast. Reconstr. Surg. 111, 1922–1931.

    Article  PubMed  Google Scholar 

  • Behm-Ansmant I., Rehwinkel J. and Izaurralde E. 2006 MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay. Cold Spring Harb. Symp. Quant. Biol. 71, 523–530.

    Article  PubMed  CAS  Google Scholar 

  • Borge O. J. and Evers K. 2003 Aspects on properties, use and ethical considerations of embryonic stem cells – A short review. Cytotechnology 41, 59–68.

    Article  PubMed  Google Scholar 

  • Chamberlain G., Fox J., Ashton B. and Middleton J. 2007 Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25, 2739–2749.

    Article  PubMed  CAS  Google Scholar 

  • Clarke D. and Frisen J. 2001 Differentiation potential of adult stem cells. Curr. Opin. Genet. Dev. 11, 575–580.

    Article  PubMed  CAS  Google Scholar 

  • Du T. and Zamore P. D. 2005 microPrimer: the biogenesis and function of microRNA. Development 132, 4645–4652.

    Article  PubMed  CAS  Google Scholar 

  • Duisters R. F., Tijsen A. J., Schroen B., Leenders J. J., Lentink V., van der Made I. et al. 2009 miR-133 and miR-30 Regulate connective tissue growth factor. Implications for a role of MicroRNAs in myocardial matrix remodeling. Circ. Res. 104, 170–178.

    Article  PubMed  CAS  Google Scholar 

  • Esau C., Kang X., Peralta E., Hanson E., Marcusson E. G., Ravichandran L. V. et al. 2004 MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem. 279, 52361–52365.

    Article  PubMed  CAS  Google Scholar 

  • Foshay K. M. and Gallicano G. I. 2007 Small RNAs, big potential: the role of MicroRNAs in stem cell function. Curr. Stem Cell Res. Ther. 2, 264–271.

    Article  PubMed  CAS  Google Scholar 

  • Gregory R. I., Chendrimada T. P. and Shiekhattar R. 2006 MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods Mol. Biol. 342, 33–47.

    PubMed  CAS  Google Scholar 

  • Huang Q., Gumireddy K., Schrier M., le Sage C., Nagel R., Nair S. et al. 2008 The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat. Cell Biol. 10, 202–210.

    Article  PubMed  CAS  Google Scholar 

  • In ’t Anker P. S., Scherjon S. A., Kleijburg-van der Keur C., de Groot-Swings G. M., Claas F. H., Fibbe W. E. et al. 2004 Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22, 1338–1345.

    Article  PubMed  Google Scholar 

  • Joglekar M. V., Parekh V. S. and Hardikar A. A. 2007 New pancreas from old: microregulators of pancreas regeneration. Trends Endocrinol. Metab. 18, 393–400.

    Article  PubMed  CAS  Google Scholar 

  • Krichevsky A. M., Sonntag K. C., Isacson O. and Kosik K. S. 2006 Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24, 857–864.

    Article  PubMed  CAS  Google Scholar 

  • Lakshmipathy U. and Hart R. P. 2008 Concise review: MicroRNA expression in multipotent mesenchymal stromal cells. Stem Cells 26, 356–363.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Romero P., Gonzalez M. A., Collejas S., Dopazo A. and Irizarny R. A. 2010 Processing of Agilent microRNA array data. BMC Res. Notes 3, 18.

    Article  PubMed  Google Scholar 

  • Lu L. L., Liu Y. J., Yang S. G., Zhao Q. J., Wang X., Gong W. et al. 2006 Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 91, 1017–1026.

    PubMed  CAS  Google Scholar 

  • Mallory A. C. and Vaucheret H. 2004 MicroRNAs: something important between the genes. Curr. Opin. Plant Biol. 7, 120–125.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno H. 2003 Versatility of adipose tissue as a source of stem cells. J. Nippon. Med. Sch. 70, 428–431.

    Article  Google Scholar 

  • Musina R. A., Bekchanova E. S., Belyavskii A. V. and Sukhikh G. T. 2006 Differentiation potential of mesenchymal stem cells of different origin. Bull. Exp. Biol. Med. 141, 147–151.

    Article  PubMed  CAS  Google Scholar 

  • Pansky A., Roitzheim B. and Tobiasch E. 2007 Differentiation potential of adult human mesenchymal stem cells. Clin. Lab. 53, 81–84.

    PubMed  CAS  Google Scholar 

  • Passier R. and Mummery C. 2003 Origin and use of embryonic and adult stem cells in differentiation and tissue repair. Cardiovasc. Res. 58, 324–335.

    Article  PubMed  CAS  Google Scholar 

  • Prockop D. J., Sekiya I. and Colter D. C. 2001 Isolation and characterization of rapidly self-renewing stem cells from cultures of human marrow stromal cells. Cytotherapy 3, 393–396.

    Article  PubMed  CAS  Google Scholar 

  • Raposio E., Guida C., Baldelli I., Benvenuto F., Curto M., Paleari L. et al. 2007 Characterization and induction of human pre-adipocytes. Toxicol. In Vitro 21, 330–334.

    Article  PubMed  CAS  Google Scholar 

  • Roh J. K., Jung K. H. and Chu K. 2008 Adult stem cell transplantation in stroke: its limitations and prospects. Curr. Stem Cell Res. Ther. 3, 185–196.

    Article  PubMed  CAS  Google Scholar 

  • Schaffler A. and Buchler C. 2007 Concise review: adipose tissue-derived stromal cells – basic and clinical implications for novel cell-based therapies. Stem Cells 25, 818–827.

    Article  PubMed  Google Scholar 

  • Tang F., Hajkova P., O’Carroll D., Lee C., Tarakhovsky A., Lao K. and Surani M. A. 2008 MicroRNAs are tightly associated with RNA-induced gene silencing complexes in vivo. Biochem. Biophys. Res. Commun. 372, 24–29.

    Article  PubMed  CAS  Google Scholar 

  • Tavazoie S. F., Alarcon C., Oskarsson T., Padua D., Wang Q., Bos P. D. et al. 2008 Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451, 147–152.

    Article  PubMed  CAS  Google Scholar 

  • Tzur G., Levy A., Meiri E., Barad O., Spector Y., Bentwich Z. et al. 2008 MicroRNA expression patterns and function in endodermal differentiation of human embryonic stem cells. PLoS ONE 3, e3726.

    Article  Google Scholar 

  • Wang S. H., Bian C. J. and Zhao C. H. 2008 Expression and function of microRNA in embryonic stem cell. Yi Chuan. 30, 1545–1549.

    Article  PubMed  CAS  Google Scholar 

  • Wilfred B. R., Wang W. X. and Nelson P. T. 2007 Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol. Genet. Metab. 91, 209–217.

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y., Yi R. and Cullen B. R. 2005 Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J 24, 138–148.

    Article  PubMed  CAS  Google Scholar 

  • Zuk P. A., Zhu M., Mizuno H., Huang J., Futrell J. W., Katz A. J. et al. 2001 Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211–228.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KYO WON LEE.

Additional information

[Cho J. A., Park H., Lim E. H. and Lee K. W. 2011 MicroRNA expression profiling in neurogenesis of adipose tissue-derived stem cells. J. Genet. 90, 81–93]

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 563 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

CHO, J.A., PARK, H., LIM, E.H. et al. MicroRNA expression profiling in neurogenesis of adipose tissue-derived stem cells. J Genet 90, 81–93 (2011). https://doi.org/10.1007/s12041-011-0041-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-011-0041-6

Keywords

Navigation