Skip to main content

Advertisement

Log in

Modifiers and mechanisms of multi-system polyglutamine neurodegenerative disorders: lessons from fly models

  • Review Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Polyglutamine (polyQ) diseases, resulting from a dynamic expansion of glutamine repeats in a polypeptide, are a class of genetically inherited late onset neurodegenerative disorders which, despite expression of the mutated gene widely in brain and other tissues, affect defined subpopulations of neurons in a disease-specific manner. We briefly review the different polyQ-expansion-induced neurodegenerative disorders and the advantages of modelling them in Drosophila. Studies using the fly models have successfully identified a variety of genetic modifiers and have helped in understanding some of the molecular events that follow expression of the abnormal polyQ proteins. Expression of the mutant polyQ proteins causes, as a consequence of intra-cellular and inter-cellular networking, mis-regulation at multiple steps like transcriptional and posttranscriptional regulations, cell signalling, protein quality control systems (protein folding and degradation networks), axonal transport machinery etc., in the sensitive neurons, resulting ultimately in their death. The diversity of genetic modifiers of polyQ toxicity identified through extensive genetic screens in fly and other models clearly reflects a complex network effect of the presence of the mutated protein. Such network effects pose a major challenge for therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi H., Waza M., Katsuno M., Tanaka F., Doyu M. and Sobue G. 2007 Pathogenesis and molecular targeted therapy of spinal and bulbar muscular atrophy. Neuropath. Appl. Neuro. 33, 135–151.

    Article  CAS  Google Scholar 

  • Adams M. D. and Sekelsky J. J. 2002 From sequence to phenotype: reverse genetics in Drosophila melanogaster. Nat. Rev. Genet. 3, 189–198.

    Article  PubMed  CAS  Google Scholar 

  • Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G. et al. 2000 The genome sequence of Drosophila melanogaster. Science 287, 2185–2195.

    Article  PubMed  Google Scholar 

  • Albrecht A. and Mundlos S. 2005 The other trinucleotide repeat: polyalanine expansion disorders. Curr. Opin. Genet. Dev. 15, 285–293.

    Article  PubMed  CAS  Google Scholar 

  • Al-Ramahi I., Perez A. M., Lim J., Zhang M., Sorensen R., de Haro M. et al. 2007 dAtaxin-2 mediates expanded ataxin-1-induced neurodegeneration in a Drosophila model of SCA1. PLoS Genet. 3, e234.

    Article  PubMed  CAS  Google Scholar 

  • Apostol B. L., Kazantsev A., Raffioni S., Illes K., Pallos J., Bodai L. et al. 2003 A cell-based assay for aggregation inhibitors as therapeutics of polyglutamine-repeat disease and validation in Drosophila. Proc. Natl. Acad. Sci. USA 100, 5950–5955.

    Article  PubMed  CAS  Google Scholar 

  • Arrasate M., Mitra S., Schweitzer E. S., Segal M. R. and Finkbeiner S. 2004 Inclusion body formation reduces levels of mutant Huntingtin and the risk of neuronal death. Nature 431, 805–810.

    Article  PubMed  CAS  Google Scholar 

  • Arya R. and Lakhotia S. C. 2006 A simple nail polish imprint technique for examination of external morphology of Drosophila eyes. Curr. Sci. 90, 1179–1180.

    Google Scholar 

  • Arya R. and Lakhotia S. C. 2008 Hsp60D is essential for caspasemediated induced apoptosis in Drosophila melanogaster. Cell Stress Chaperones 13, 509–526.

    Article  PubMed  CAS  Google Scholar 

  • Arya R., Mallik M. and Lakhotia S. C. 2007 Heat shock genes-integrating cell survival and deth. J. Biosci. 32, 595–610.

    Article  PubMed  CAS  Google Scholar 

  • Arya R., Nisha S. A. and Lakhotia S. C. 2010 Hsp60D — A novel modifier of polyglutamine-mediated neurodegeneration in Drosophila. Ann. Neurosci. 17, 8–17.

    CAS  Google Scholar 

  • Bae B. I., Xu H., Igarashi S., Fujimuro M., Agrawal N., Taya Y. et al. 2005 p53 mediates cellular dysfunction and behavioral abnormalities in Huntington’s disease. Neuron 47, 29–41.

    Article  PubMed  CAS  Google Scholar 

  • Bahadorani S. and Hilliker A. J. 2008 Antioxidants cannot suppress the lethal phenotype of a Drosophila melanogaster model of Huntington’s disease. Genome 51, 392–395.

    Article  PubMed  CAS  Google Scholar 

  • Bates G. 2003 Huntingtin aggregation and toxicity in Huntington’s disease. Lancet 361, 1642–1644.

    Article  PubMed  CAS  Google Scholar 

  • Bence N. F., Sampat R. M. and Kopito R. R. 2001 Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555.

    Article  PubMed  CAS  Google Scholar 

  • Bennett E. J., Bence N. F., Jayakumar R. and Kopito R. R. 2005 Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol. Cell 17, 351–365.

    Article  PubMed  CAS  Google Scholar 

  • Benomar A., Krols L., Stevanin G., Cancel G., LeGuern E., David G. et al. 1995 The gene for autosomal dominant cerebellar ataxia with pigmentary macular dystrophy maps to chromosome 3p12–p21.1. Nat. Genet. 10, 84–88.

    Article  PubMed  CAS  Google Scholar 

  • Berger Z., Davies J. E., Luo S., Pasco M. Y., Majoul I., O’Kane C. J. et al. 2006 Deleterious and protective properties of an aggregate-prone protein with a polyalanine expansion. Hum. Mol. Genet. 15, 453–465.

    Article  PubMed  CAS  Google Scholar 

  • Berke S. J. and Paulson H. L. 2003 Protein aggregation and the ubiquitin proteasome pathway: gaining the UPPer hand on neurodegeneration. Curr. Opin. Genet. Dev. 13, 253–261.

    Article  PubMed  CAS  Google Scholar 

  • Berke S. J., Schmied F. A., Brunt E. R., Ellerby L. M. and Paulson H. L. 2004 Caspase-mediated proteolysis of the polyglutamine disease protein Ataxin-3. J. Neurochem. 89, 908–918.

    Article  PubMed  CAS  Google Scholar 

  • Bier E. 2005 Drosophila, the golden bug, emerges as a tool for human genetics. Nat. Rev. Genet. 6, 9–23.

    Article  PubMed  CAS  Google Scholar 

  • Bilen J. and Bonini N. M. 2005 Drosophila as a model for human neurodegenerative disease. Annu. Rev. Genet. 39, 153–171.

    Article  PubMed  CAS  Google Scholar 

  • Bilen J. and Bonini N. M. 2007 Genome-wide screen for modifiers of Ataxin-3 neurodegeneration in Drosophila. PLoS Genet. 3, 1950–1964.

    Article  PubMed  CAS  Google Scholar 

  • Bilen J., Liu N., Burnett B. G., Pittman R. N. and Bonini N. M. 2006 MicroRNA pathways modulate polyglutamine-induced neurodegeneration. Mol. Cell 24, 157–163.

    Article  PubMed  CAS  Google Scholar 

  • Boeddrich A., Gaumer S., Haacke A., Tzvetkov N., Albrecht M., Evert B. O. et al. 2006 An arginine/lysine-rich motif is crucial for VCP/p97-mediated modulation of Ataxin-3 fibrillogenesis. EMBO J. 25, 1547–1558.

    Article  PubMed  CAS  Google Scholar 

  • Boutell J. M., Thomas P., Neal J. W., Weston V. J., Duce J., Harper P. S. et al. 1999 Aberrant interactions of transcriptional repressor proteins with the Huntington’s disease gene product, Huntingtin. Hum. Mol. Genet. 8, 1647–1655.

    Article  PubMed  CAS  Google Scholar 

  • Bowman A. B., Yoo S. Y., Dantuma N. P. and Zoghbi H. Y. 2005 Neuronal dysfunction in a polyglutamine disease model occurs in the absence of ubiquitin-proteasome system impairment and inversely correlates with the degree of nuclear inclusion formation. Hum. Mol. Genet. 14, 679–691.

    Article  PubMed  CAS  Google Scholar 

  • Branco J., Al-Ramahi I., Ukani L., Perez A. M., Fernandez-Funez P., Rincon-Limas D. et al. 2008 Comparative analysis of genetic modifiers in Drosophila points to common and distinct mechanisms of pathogenesis among polyglutamine diseases. Hum. Mol. Genet. 17, 376–390.

    Article  PubMed  CAS  Google Scholar 

  • Brand A. H. and Perrimon N. 1993 Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415.

    PubMed  CAS  Google Scholar 

  • Brook J. D., McCurrach M. E., Harley H. G., Buckler A. J., Church D., Aburatani H. et al. 1992 Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68, 799–808.

    Article  PubMed  CAS  Google Scholar 

  • Brumby A. M. and Richardson H. E. 2005 Using Drosophila melanogaster to map human cancer pathways. Nat. Rev. Cancer 5, 626–639.

    Article  PubMed  CAS  Google Scholar 

  • Burnett B. G., Andrews J., Ranganathan S., Fischbeck K. H. and Di Prospero N. A. 2008 Expression of expanded polyglutamine targets profilin for degradation and alters actin dynamics. Neurobiol. Dis. 30, 365–374.

    Article  PubMed  CAS  Google Scholar 

  • Campuzano V., Montermini L., Molto M. D., Pianese L., Cossee M., Cavalcanti F. et al. 1996 Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427.

    Article  PubMed  CAS  Google Scholar 

  • Celotto A. M. and Palladino M. J. 2005 Drosophila: a “model” model system to study neurodegeneration. Mol. Interv. 5, 292–303.

    Article  PubMed  CAS  Google Scholar 

  • Chai Y., Koppenhafer S. L., Shoesmith S. J., Perez M. K. and Paulson H. L. 1999 Evidence for proteasome involvement in polyglutamine disease: localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro. Hum. Mol. Genet. 8, 673–682.

    Article  PubMed  CAS  Google Scholar 

  • Chai Y., Shao J., Miller V. M., Williams A. and Paulson H. L. 2002 Live-cell imaging reveals divergent intracellular dynamics of polyglutamine disease proteins and supports a sequestration model of pathogenesis. Proc. Natl. Acad. Sci. USA 99, 9310–9315.

    Article  PubMed  CAS  Google Scholar 

  • Chan H. Y., Warrick J. M., Gray-Board G. L., Paulson H. L. and Bonini N. M. 2000 Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum. Mol. Genet. 9, 2811–2820.

    Article  PubMed  CAS  Google Scholar 

  • Chan H. Y., Warrick J. M., Andriola I., Merry D. and Bonini N. M. 2002 Genetic modulation of polyglutamine toxicity by protein conjugation pathways in Drosophila. Hum. Mol. Genet. 11, 2895–2904.

    Article  PubMed  CAS  Google Scholar 

  • Chang W. H., Cemal C. K., Hsu Y. H., Kuo C. L., Nukina N., Chang M. H. et al. 2005 Dynamic expression of Hsp27 in the presence of mutant Ataxin-3. Biochem. Biophys. Res. Commun. 336, 258–267.

    Article  PubMed  CAS  Google Scholar 

  • Chen H. K., Fernandez-Funez P., Acevedo S. F., Lam Y. C., Kaytor M. D., Fernandez M. H. et al. 2003 Interaction of Aktphosphorylated Ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1. Cell 113, 457–468.

    Article  PubMed  CAS  Google Scholar 

  • Chen M., Ona V. O., Li M., Ferrante R. J., Fink K. B., Zhu S. et al. 2000 Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat. Med. 6, 797–801.

    Article  PubMed  CAS  Google Scholar 

  • Chien S., Reiter L. T., Bier E. and Gribskov M. 2002 Homophila: human disease gene cognates in Drosophila. Nucleic Acids Res. 30, 149–151.

    Article  PubMed  CAS  Google Scholar 

  • Choi J. Y., Ryu J. H., Kim H. S., Park S. G., Bae K. H., Kang S. et al. 2007 Co-chaperone CHIP promotes aggregation of Ataxin-1. Mol.Cell Neurosci. 34, 69–79.

    Article  PubMed  CAS  Google Scholar 

  • Chou A. H., Yeh T. H., Quyang P., Chen Y. L., Chen S. Y. and Hand H. L 2008 Polyglutamine-expanded ataxin-3 causes cerebellar dysfunction of SCA3 transgenic mice by inducing transcriptional dysregulation. Neurobiol. Dis. 31, 89–101.

    Article  PubMed  CAS  Google Scholar 

  • Chou A. H., Chen C. Y., Chen S. Y., Chen W. J., Chen Y. L., Weng Y. S. et al. 2010 Polyglutamine-expanded Ataxin-7 causes cerebellar dysfunction by inducing transcriptional dysregulation. Neurochem. Int. 56, 329–339.

    Article  PubMed  CAS  Google Scholar 

  • Chou T. B. and Perrimon N. 1996 The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics 144, 1673–1679.

    PubMed  CAS  Google Scholar 

  • Cossee M., Schmitt M., Campuzano V., Reutenauer L., Moutou C., Mandel J. L. et al. 1997 Evolution of the Friedreich’s ataxia trinucleotide repeat expansion: founder effect and premutations. Proc. Natl. Acad. Sci. USA 94, 7452–7457.

    Article  PubMed  CAS  Google Scholar 

  • Coughlan C. M. and Brodsky J. L. 2003 Yeast as a model system to investigate protein conformational diseases. Methods Mol. Biol. 232, 77–90.

    PubMed  CAS  Google Scholar 

  • Cummings C. J., Mancini M. A., Antalffy B., DeFranco D. B., Orr H. T. and Zoghbi H. Y. 1998 Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat. Genet. 19, 148–154.

    Article  PubMed  CAS  Google Scholar 

  • Cummings C. J., Orr H. T. and Zoghbi H. Y. 1999 Progress in pathogenesis studies of spinocerebellar ataxia type 1. Philos. Trans. R. Soc. London. ser. B. 354, 1079–1081.

    Article  CAS  Google Scholar 

  • David G., Abbas N., Stevanin G., Durr A., Yvert G., Cancel G. et al. 1997 Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nature Genet. 17, 65–70.

    Article  PubMed  CAS  Google Scholar 

  • Davies S.W., Turmaine M., Cozens B. A., DiFiglia M., Sharp A. H., Ross C. A. et al. 1997 Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548.

    Article  PubMed  CAS  Google Scholar 

  • Day J. W., Schut L. J., Moseley M. L., Durand A. C. and Ranum L. P. 2000 Spinocerebellar ataxia type 8: clinical features in a large family. Neurology 55, 649–657.

    PubMed  CAS  Google Scholar 

  • De Boulle K., Verkerk A. J., Reyniers E., Vits L., Hendrickx J., Van Roy B. et al. 1993 A point mutation in the FMR-1 gene associated with fragile X mental retardation. Nat. Genet. 3, 31–35.

    Article  PubMed  Google Scholar 

  • de Chiara C., Menon R. P., Dal Piaz F., Calder L. and Pastore A. 2005 Polyglutamine is not all: The functional role of the AXH domain in the Ataxin-1 protein. J. Mol. Biol. 354, 883–893.

    Article  PubMed  CAS  Google Scholar 

  • Dickson B., Sprenger F. and Hafen E. 1992 Prepattern in the developing Drosophila eye revealed by an activated torso-sevenless chimeric receptor. Genes. Dev. 6, 2327–2339.

    Article  PubMed  CAS  Google Scholar 

  • DiFiglia M., Sapp E., Chase K., Schwarz C., Meloni A., Young C. et al. 1995 Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14, 1075–1081.

    Article  PubMed  CAS  Google Scholar 

  • DiFiglia M., Sapp E., Chase K. O., Davies S. W., Bates G. P., Vonsattel J. P. et al. 1997 Aggregation of Huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993.

    Article  PubMed  CAS  Google Scholar 

  • Doumanis J., Wada K., Kino Y., Moore A. W. and Nukina N. 2009 RNAi screening in Drosophila cells identifies new modifiers of mutant Huntingtin aggregation. PLoS ONE 4, e7275.

    Article  PubMed  CAS  Google Scholar 

  • Dragunow M., Faull R. L., Lawlor P., Beilharz E. J., Singleton K., Walker E. B. et al. 1995 In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. Neuroreport 6, 1053–1057.

    Article  PubMed  CAS  Google Scholar 

  • Dunah A.W., Jeong H., Griffin A., Kim Y.M., Standaert D. G., Hersch S. M. et al. 2002 Sp1 and TAFII130 transcriptional activity disrupted in early Huntington’s disease. Science 296, 2238–2243.

    Article  PubMed  CAS  Google Scholar 

  • Eichler E. E. and Nelson D. L. 1996 Genetic variation and evolutionary stability of the FMR1 CGG repeat in six closed human populations. Am. J. Med. Genet. 64, 220–225.

    Article  PubMed  CAS  Google Scholar 

  • Emamian E. S., Kaytor M. D., Duvick L. A., Zu T., Tousey S. K., Zoghbi H. Y. et al. 2003 Serine 776 of Ataxin-1 is critical for polyglutamine-induced disease in SCA1 transgenic mice. Neuron 38, 375–387.

    Article  PubMed  CAS  Google Scholar 

  • Evans C. J., Olson J. M., Ngo K. T., Kim E., Lee N. E., Kuoy E. et al. 2009 G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. Nat. Methods 6, 603–605.

    Article  PubMed  CAS  Google Scholar 

  • Everett C. M. and Wood N. W. 2004 Trinucleotide repeats and neurodegenerative disease. Brain 127, 2385–2405.

    Article  PubMed  CAS  Google Scholar 

  • Faber P.W., Barnes G. T., Srinidhi J., Chen J., Gusella J. F. and Mac-Donald M. E. 1998 Huntingtin interacts with a family of WW domain proteins. Hum. Mol. Genet. 7, 1463–1474.

    Article  PubMed  CAS  Google Scholar 

  • Feany M. B. and Bender W.W. 2000 A Drosophila model of Parkinson’s disease. Nature 404, 394–398.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Funez P., Nino-Rosales M. L., de Gouyon B., She W. C., Luchak J. M., Martinez P. et al. 2000 Identification of genes that modify Ataxin-1-induced neurodegeneration. Nature 408, 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Ferrante R. J., Kubilus J. K., Lee J., Ryu H., Beesen A., Zucker B. et al. 2003 Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J. Neurosci. 23, 9418–9427.

    PubMed  CAS  Google Scholar 

  • Fischbeck K. H., Lieberman A., Bailey C. K., Abel A. and Merry D. E. 1999 Androgen receptor mutation in Kennedy’s disease. Philos. Trans. R. Soc. London. Ser. B. 354, 1075–1078.

    Article  CAS  Google Scholar 

  • Franceschini N. and Kirschfeld K. 1971 Pseudopupil phenomena in the compound eye of Drosophila. Kybernetik 9, 159–182.

    Article  PubMed  CAS  Google Scholar 

  • Friedlander R. M. 2003 Apoptosis and caspases in neurodegenerative diseases. N. Engl. J. Med. 348, 1365–1375.

    Article  PubMed  CAS  Google Scholar 

  • Fu Y. H., Pizzuti A., Fenwick Jr R. G., King J., Rajnarayan S., Dunne P. W. et al. 1992 An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255, 1256–1258.

    Article  PubMed  CAS  Google Scholar 

  • Fujikake N., Nagai Y., Popiel H. A., Okamoto Y., Yamaguchi M. and Toda T. 2008 Heat shock transcription factor 1-activating compounds suppress polyglutamine-induced neurodegeneration through induction of multiple molecular chaperones. J. Biol. Chem. 283, 26188–26197.

    Article  PubMed  CAS  Google Scholar 

  • Gafni J., Hermel E., Young J. E., Wellington C. L., Hayden M. R. and Ellerby L. M. 2004 Inhibition of calpain cleavage of Huntingtin reduces toxicity: accumulation of calpain/caspase fragments in the nucleus. J. Biol. Chem. 279, 20211–20220.

    Article  PubMed  CAS  Google Scholar 

  • Ganusova E. E., Ozolins L. N., Bhagat S., Newnam G. P., Wegrzyn R. D., Sherman M. Y. et al. 2006 Modulation of prion formation, aggregation, and toxicity by the actin cytoskeleton in yeast. Mol. Cell Biol. 26, 617–629.

    Article  PubMed  CAS  Google Scholar 

  • Garcia M., Charvin D. and Caboche J. 2004 Expanded Huntingtin activates the c-Jun terminal kinase/c-Jun pathway prior to aggregate formation in striatal neurons in culture. Neuroscience 127, 859–870.

    Article  PubMed  CAS  Google Scholar 

  • Gatchel J. R. and Zoghbi H. Y. 2005 Diseases of unstable repeat expansion: mechanisms and common principles. Nat. Rev. Genet. 6, 743–755.

    Article  PubMed  CAS  Google Scholar 

  • Gecz J., Gedeon A. K., Sutherland G. R. and Mulley J. C. 1996 Identification of the gene FMR2, associated with FRAXE mental retardation. Nat. Genet. 13, 105–108.

    Article  PubMed  CAS  Google Scholar 

  • Gerber H. P., Seipel K., Georgiev O., Hofferer M., Hug M., Rusconi S. et al. 1994 Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 263, 808–811.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S. and Feany M. B. 2004 Comparison of pathways controlling toxicity in the eye and brain in Drosophila models of human neurodegenerative diseases. Hum. Mol. Genet. 13, 2011–2018.

    Article  PubMed  CAS  Google Scholar 

  • Gispert S., Twells R., Orozco G., Brice A., Weber J., Heredero L. et al. 1993 Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA2) to chromosome 12q23–24.1. Nat. Genet. 4, 295–299.

    Article  PubMed  CAS  Google Scholar 

  • Gong W. J. and Golic K. G. 2006 Loss of Hsp70 in Drosophila is pleiotropic, with effects on thermotolerance, recovery from heat shock and neurodegeneration. Genetics 172, 275–286.

    Article  PubMed  CAS  Google Scholar 

  • Goto S., Takahashi R., Kumiyama A. A., Radak Z., Hayashi T., Takenouchi M. et al. 2001 Implications of protein degradation in aging. Ann. N. Y. Acad. Sci. 928, 54–64.

    Article  PubMed  CAS  Google Scholar 

  • Gu Y., Shen Y., Gibbs R. A. and Nelson D. L. 1996 Identification of FMR2, a novel gene associated with the FRAXE CCG repeat and CpG island. Nat. Genet. 13, 109–113.

    Article  PubMed  CAS  Google Scholar 

  • Gunawardena S., Her L. S., Brusch R. G., Laymon R. A., Niesman I. R., Gordesky-Gold B. et al. 2003 Disruption of axonal transport by loss of Huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40, 25–40.

    Article  PubMed  CAS  Google Scholar 

  • Gusella J. F. and MacDonald M. E. 2000 Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nat. Rev. Neurosci. 1, 109–115.

    Article  PubMed  CAS  Google Scholar 

  • Gusella J. F., Macdonald M. E., Ambrose C. M. and Duyao M. P. 1993 Molecular-Genetics of Huntingtons-Disease. Arch. Neurol. 50, 1157–1163.

    PubMed  CAS  Google Scholar 

  • Hagerman P. J. and Hagerman R. J. 2004 The fragile-X premutation: a maturing perspective. Am. J. Hum. Genet. 74, 805–816.

    Article  PubMed  CAS  Google Scholar 

  • Hagerman R. J. 2006 Lessons from fragile X regarding neurobiology, autism, and neurodegeneration. J. Dev. Behav. Pediatr. 27, 63–74.

    Article  PubMed  Google Scholar 

  • Harding A. E. 1981 Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 104, 589–620.

    Article  PubMed  CAS  Google Scholar 

  • Hartenstein V., Younossi-Hartenstein A., Cardona A. and Pereanu W. 2008 Modeling the developing Drosophila brain: rationale, technique, and application. J. Biosci. 58, 823–836.

    Article  Google Scholar 

  • Hartl F. U. and Hayer-Hartl M. 2002 Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858.

    Article  PubMed  CAS  Google Scholar 

  • Hay B. A., Wolff T. and Rubin G. M. 1994 Expression of baculovirus P35 prevents cell death in Drosophila. Development 120, 2121–2129.

    PubMed  CAS  Google Scholar 

  • Hay D. G., Sathasivam K., Tobaben S., Stahl B., Marber M., Mestril R. et al. 2004 Progressive decrease in chaperone protein levels in a mouse model of Huntington’s disease and induction of stress proteins as a therapeutic approach. Hum. Mol. Genet. 13, 1389–1405.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi Y., Kakita A., Yamada M., Egawa S., Oyanagi S., Naito H. et al. 1998 Hereditary dentatorubral-pallidoluysian atrophy: ubiquitinated filamentous inclusions in the cerebellar dentate nucleus neurons. Acta Neuropathol. 95, 479–482.

    Article  PubMed  CAS  Google Scholar 

  • Helmlinger D., Hardy S., Sasorith S., Klein F., Robert F., Weber C. et al. 2004 Ataxin-7 is a subunit of GCN5 histone acetyltransferase-containing complexes. Hum. Mol. Genet. 13, 1257–1265.

    Article  PubMed  CAS  Google Scholar 

  • Helmlinger D., Tora L. and Devys D. 2006 Transcriptional alterations and chromatin remodeling in polyglutamine diseases. Trends Genet. 22, 562–570.

    Article  PubMed  CAS  Google Scholar 

  • Hendrick J. P. and Hartl F. U. 1993 Molecular chaperone functions of heat-shock proteins. Annu. Rev. Biochem. 62, 349–384.

    Article  PubMed  CAS  Google Scholar 

  • Higashiyama H., Hirose F., Yamaguchi M., Inoue Y. H., Fujikake N., Matsukage A. et al. 2002 Identification of ter94, Drosophila VCP, as a modulator of polyglutamine-induced neurodegeneration. Cell Death Differ. 9, 264–273.

    Article  PubMed  CAS  Google Scholar 

  • Hockly E., Richon V. M., Woodman B., Smith D. L., Zhou X., Rosa E. et al. 2003 Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc. Natl. Acad. Sci. USA 100, 2041–2046.

    Article  PubMed  CAS  Google Scholar 

  • Hodgson J. G., Agopyan N., Gutekunst C. A., Leavitt B. R., LePiane F., Singaraja R. et al. 1999 A YAC mouse model for Huntington’s disease with full-length mutant Huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23, 181–192.

    Article  PubMed  CAS  Google Scholar 

  • Holmes S. E., Hearn E. O., Ross C. A. and Margolis R. L. 2001 SCA12: an unusual mutation leads to an unusual spinocerebellar ataxia. Brain Res. Bull. 56, 397–403.

    Article  PubMed  CAS  Google Scholar 

  • Hsieh M., Tsai H. F. and Chang W. H. 2005 HSP27 and cell death in spinocerebellar ataxia type 3. Cerebellum 4, 31–36.

    Article  PubMed  CAS  Google Scholar 

  • Hughes R. E. and Olson J. M. 2001 Therapeutic opportunities in polyglutamine disease. Nat. Med. 7, 419–423.

    Article  PubMed  CAS  Google Scholar 

  • Humbert S., Bryson E. A., Cordelières F. P., Connors N. C., Datta S. R., Finkbeiner S. et al. 2002 The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves Huntingtin phosphorylation by Akt. Dev. Cell 2, 831–837.

    Article  PubMed  CAS  Google Scholar 

  • Huynh D. P., Yang H. T., Vakharia H., Nguyen D. and Pulst S. M. 2003 Expansion of the polyQ repeat in Ataxin-2 alters its Golgi localization, disrupts the Golgi complex and causes cell death. Hum. Mol. Genet. 12, 1485–1496.

    Article  PubMed  CAS  Google Scholar 

  • Igarashi S., Tanno Y., Onodera O., Yamazaki M., Sato S., Ishikawa A. et al. 1992 Strong correlation between the number of cag repeats in androgen receptor genes and the clinical onset of features of spinal and bulbar muscular-atrophy. Neurology 42, 2300–2302.

    PubMed  CAS  Google Scholar 

  • Ikeda H., Yamaguchi M., Sugai S., Aze Y., Narumiya S. and Kakizuka A. 1996 Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nat. Genet. 13, 196–202.

    Article  PubMed  CAS  Google Scholar 

  • Ikeuchi T., Koide R., Onodera O., Tanaka H., Oyake M., Takano H. et al. 1995 Dentatorubral-pallidoluysian atrophy (DRPLA): Molecular basis for wide clinical features of DRPLA. Clin. Neurosci. 3, 23–27.

    PubMed  CAS  Google Scholar 

  • Imbert G., Saudou F., Yvert G., Devys D., Trottier Y., Garnier J. M. et al. 1996 Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat. Genet. 14, 285–291.

    Article  PubMed  CAS  Google Scholar 

  • Iwata A., Christianson J. C., Bucci M., Ellerby L. M., Nukina N., Forno L. S. et al. 2005 Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Proc. Natl. Acad. Sci. USA 102, 13135–13140.

    Article  PubMed  CAS  Google Scholar 

  • Jackson G. R., Salecker I., Dong X., Yao X., Arnheim N., Faber P. W. et al. 1998 Polyglutamine-expanded human Huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron 21, 633–642.

    Article  PubMed  CAS  Google Scholar 

  • Jana N. R., Zemskov E. A., Wang G. and Nukina N. 2001 Altered proteasomal function due to the expression of polyglutamineexpanded truncated N-terminal Huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release. Hum. Mol. Genet. 10, 1049–1059.

    Article  PubMed  CAS  Google Scholar 

  • Jiang H., Nucifora Jr F. C., Ross C. A. and DeFranco D. B. 2003 Cell death triggered by polyglutamine-expanded Huntingtin in a neuronal cell line is associated with degradation of CREBbinding protein. Hum. Mol. Genet. 12, 1–12.

    Article  PubMed  Google Scholar 

  • Johnston S. D. 2002 The art and design of genetic screens: Drosophila melanogaster. Nat. Rev. Genet. 3, 176–188.

    Article  CAS  Google Scholar 

  • Jolly C. and Lakhotia S. C. 2006 Human sat III and Drosophila hsrω transcripts: a common paradigm for nuclear regulation of RNA processing in stressed cells through requestration of RNA processing factors. Nucleic Acids Res. 34, 5508–5514.

    Article  PubMed  CAS  Google Scholar 

  • Kaltenbach L. S., Romero E., Becklin R. R., Chettier R., Bell R., Phansalkar A. et al. 2007 Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet. 3, e82.

    Article  PubMed  CAS  Google Scholar 

  • Kanuka H., Kurunaga E., Hiratou T., Igaki T., Nelson B., Okario H. and Miura M. 2003 Cytosol-endoplasmic reticulum interplay by Sec 61 alpha translocon in polyglutamine-mediated neurofoxicity in Drosophila. Proc. Natl. Acad. Sci. USA 100, 11723–11728.

    Article  PubMed  CAS  Google Scholar 

  • Kariya S., Hirano M., Nagai Y., Furiya Y., Fujikake N., Toda T. et al. 2005 Humanin attenuates apoptosis induced by DRPLA pro- teins with expanded polyglutamine stretches. J. Mol. Neurosci. 25, 165–169.

    Article  PubMed  CAS  Google Scholar 

  • Karlin S. and Burge C. 1996 Trinucleotide repeats and long homopeptides in genes and proteins associated with nervous system disease and development. Proc. Natl. Acad. Sci. USA 93, 1560–1565.

    Article  PubMed  CAS  Google Scholar 

  • Katsuno M., Adachi H., Minamiyama M., Waza M., Tokui K., Banno H. et al. 2006 Reversible disruption of dynactin 1- mediated retrograde axonal transport in polyglutamine-induced motor neuron degeneration. J. Neurosci. 26, 12106–12117.

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi Y., Okamoto T., Taniwaki M., Aizawa M., Inoue M., Katayama S. et al. 1994 CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat. Genet. 8, 221–228.

    Article  PubMed  CAS  Google Scholar 

  • Kazantsev A., Preisinger E., Dranovsky A., Goldgaber D. and Housman D. 1999 Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc. Natl. Acad. Sci. USA 96, 11404–11409.

    Article  PubMed  CAS  Google Scholar 

  • Kazantsev A., Walker H. A., Slepko N., Bear J. E., Preisinger E., Steffan J. S. et al. 2002 A bivalent Huntingtin binding peptide suppresses polyglutamine aggregation and pathogenesis in Drosophila. Nat. Genet. 30, 367–376.

    Article  PubMed  CAS  Google Scholar 

  • Kazemi-Esfarjani P. and Benzer S. 2000 Genetic suppression of polyglutamine toxicity in Drosophila. Science 287, 1837–1840.

    Article  PubMed  CAS  Google Scholar 

  • Kazemi-Esfarjani P. and Benzer S. 2002 Suppression of polyglutamine toxicity by a Drosophila homolog of myeloid leukemia factor 1. Hum. Mol. Genet. 11, 2657–2672.

    Article  PubMed  CAS  Google Scholar 

  • Kehoe P., Krawczak M., Harper P. S., Owen M. J. and Jones A. L. 1999 Age of onset in Huntington disease: sex specific influence of apolipoprotein E genotype and normal CAG repeat length. J. Med. Genet. 36, 108–111.

    PubMed  CAS  Google Scholar 

  • Kim M., Lee H. S., LaForet G., McIntyre C., Martin E. J., Chang P. et al. 1999 Mutant huntingtin expression in clonal striatal cells: dissociation of inclusion formation and neuronal survival by caspase inhibition. J. Neurosci. 19, 964–973.

    PubMed  CAS  Google Scholar 

  • Kim T. W. and Tanzi R. E. 1998 Neuronal intranuclear inclusions in polyglutamine diseases: nuclear weapons or nuclear fallout? Neuron 21, 657–659.

    Article  PubMed  CAS  Google Scholar 

  • Klement I. A., Skinner P. J., Kaytor M. D., Yi H., Hersch S. M., Clark H. B. et al. 1998 Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95, 41–53.

    Article  PubMed  CAS  Google Scholar 

  • Knight S. J., Flannery A. V., Hirst M. C., Campbell L., Christodoulou Z., Phelps S. R. et al. 1993 Trinucleotide repeat amplification and hypermethylation of a CpG island in FRAXE mental retardation. Cell 74, 127–134.

    Article  PubMed  CAS  Google Scholar 

  • Koide R., Ikeuchi T., Onodera O., Tanaka H., Igarashi S., Endo K. et al. 1994 Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat. Genet. 6, 9–13.

    Article  PubMed  CAS  Google Scholar 

  • Komure O., Sano A., Nishino N., Yamauchi N., Ueno S., Kondoh K. et al. 1995 DNA analysis in hereditary dentatorubral-pallidoluysian atrophy: correlation between CAG repeat length and phenotypic variation and the molecular basis of anticipation. Neurology 45, 143–149.

    PubMed  CAS  Google Scholar 

  • Koob M. D., Moseley M. L., Schut L. J., Benzow K. A., Bird T. D., Day J. W. et al. 1999 An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat. Genet. 21, 379–384.

    Article  PubMed  CAS  Google Scholar 

  • Kouroku Y., Fujita E., Jimbo A., Kikuchi T., Yamagata T., Momoi M. Y. et al. 2002 Polyglutamine aggregates stimulate ER stress signals and caspase-12 activation. Hum. Mol. Genet. 11, 1505–1515.

    Article  PubMed  CAS  Google Scholar 

  • Krobitsch S. and Lindquist S. 2000 Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc. Natl. Acad. Sci. USA 97, 1589–1594.

    Article  PubMed  CAS  Google Scholar 

  • Kumar J. P. 2009 The molecular circuitry governing retinal determination. Biochim. Biophys. Acta 1789, 306–314.

    PubMed  CAS  Google Scholar 

  • Kuttenkeuler D. and Boutros M. 2004 Genome-wide RNAi as a route to gene function in Drosophila. Brief. Funct. Genomic Proteomic 3, 168–176.

    Article  PubMed  CAS  Google Scholar 

  • La Spada A. R. and Taylor J. P. 2003 Polyglutamines placed into context. Neuron 38, 681–684.

    Article  PubMed  Google Scholar 

  • LaFevre-Bernt M. A. and Ellerby L. M. 2003 Kennedy’s disease. Phosphorylation of the polyglutamine-expanded form of androgen receptor regulates its cleavage by caspase-3 and enhances cell death. J. Biol. Chem. 278, 34918–34924.

    Article  PubMed  CAS  Google Scholar 

  • Lakhotia S. C., Ray P., Rajendra T. K. and Prasanth K. V. 1999 The non-coding transcripts of hsr-omega gene in Drosophila: do they regulate trafficking and availability of nuclear RNA-processing factors? Curr. Sci. 77, 553–563.

    CAS  Google Scholar 

  • Lalioti M. D., Scott H. S., Buresi C., Rossier C., Bottani A., Morris M. A. et al. 1997 Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy. Nature 386, 847–851.

    Article  PubMed  CAS  Google Scholar 

  • Larson G. P., Ding S., Lafreniere R. G., Rouleau G. A. and Krontiris T. G. 1999 Instability of the EPM1 minisatellite. Hum. Mol. Genet. 8, 1985–1988.

    Article  PubMed  CAS  Google Scholar 

  • Laspada A. R., Wilson E. M., Lubahn D. B., Harding A. E. and Fischbeck K. H. 1991 Androgen receptor gene-mutations in Xlinked spinal and bulbar muscular-atrophy. Nature 352, 77–79.

    Article  CAS  Google Scholar 

  • Latouche M., Lasbleiz C., Martin E., Monnier V., Debeir T., Mouatt-Prigent A. et al. 2007 A conditional pan-neuronal Drosophila model of spinocerebellar ataxia 7 with a reversible adult phenotype suitable for identifying modifier genes. J. Neurosci. 27, 2483–2492.

    Article  PubMed  CAS  Google Scholar 

  • Lee W. C., Yoshihara M. and Littleton J. T. 2004 Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington’s disease. Proc. Natl. Acad. Sci. USA 101, 3224–3229.

    Article  PubMed  CAS  Google Scholar 

  • Lessing D. and Bonini N. M. 2008 Polyglutamine genes interact to modulate the severity and progression of neurodegeneration in Drosophila. PLoS Biol. 6, e29.

    Article  PubMed  CAS  Google Scholar 

  • Li L. B., Yu Z., Teng X. and Bonini N. M. 2008 RNA toxicity is a component of Ataxin-3 degeneration in Drosophila. Nature 453, 1107–1111.

    Article  PubMed  CAS  Google Scholar 

  • Li S. H., Cheng A. L., Zhou H., Lam S., Rao M., Li H. et al. 2002 Interaction of Huntington disease protein with transcriptional activator Sp1. Mol. Cell. Biol. 22, 1277–1287.

    Article  PubMed  CAS  Google Scholar 

  • Li Y., Yokota T., Gama V., Yoshida T., Gomez J. A., Ishikawa K. et al. 2007 Bax-inhibiting peptide protects cells from polyglutamine toxicity caused by Ku70 acetylation. Cell Death Differ. 14, 2058–2067.

    Article  PubMed  CAS  Google Scholar 

  • Liao P. C., Lin H. Y., Yuh C. H., Yu L. K. and Wang H. D. 2008 The effect of neuronal expression of heat shock proteins 26 and 27 on lifespan, neurodegeneration, and apoptosis in Drosophila. Biochem. Biophys. Res. Commun. 376, 637–641.

    Article  PubMed  CAS  Google Scholar 

  • Lievens J. C., Iche M., Laval M., Faivre-Sarrailh C. and Birman S. 2008 AKT-sensitive or insensitive pathways of toxicity in glial cells and neurons in Drosophila models of Huntington’s disease. Hum. Mol. Genet. 17, 882–894.

    Article  PubMed  CAS  Google Scholar 

  • Lim J., Crespo-Barreto J., Jafar-Nejad P., Bowman A. B., Richman R., Hill D. E. et al. 2008 Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1. Nature 452, 713–718.

    Article  PubMed  CAS  Google Scholar 

  • Lin D. M. and Goodman C. S. 1994 Ectopic and increased expression of Fasciclin II alters motoneuron growth cone guidance. Neuron 13, 507–523.

    Article  PubMed  CAS  Google Scholar 

  • Lin X., Cummings C. J. and Zoghbi H. Y. 1999 Expanding our understanding of polyglutamine diseases through mouse models. Neuron 24, 499–502.

    Article  PubMed  CAS  Google Scholar 

  • Lin X., Antalffy B., Kang D., Orr H. T. and Zoghbi H. Y. 2000 Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1. Nat. Neurosci. 3, 157–163.

    Article  PubMed  CAS  Google Scholar 

  • Liquori C. L., Ricker K., Moseley M. L., Jacobsen J. F., Kress W., Naylor S. L. et al. 2001 Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293, 864–867.

    Article  PubMed  CAS  Google Scholar 

  • Liu Y. F. 1998 Expression of polyglutamine-expanded Huntingtin activates the SEK1-JNK pathway and induces apoptosis in a hippocampal neuronal cell line. J. Biol. Chem. 273, 28873–28877.

    Article  PubMed  CAS  Google Scholar 

  • Lutz R. E. 2007 Trinucleotide repeat disorders. Semin. Pediatr. Neurol. 14, 26–33.

    Article  PubMed  Google Scholar 

  • MacDonald M. E., Gines S., Gusella J. F. and Wheeler V. C. 2003 Huntington’s disease. Neuromol. Med. 4, 7–20.

    Article  CAS  Google Scholar 

  • Mahadevan M., Tsilfidis C., Sabourin L., Shutler G., Amemiya C., Jansen G. et al. 1992 Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255, 1253–1255.

    Article  PubMed  CAS  Google Scholar 

  • Mallik M. and Lakhotia S. C. 2009a RNAi for the large noncoding hsrω transcripts suppresses polyglutamine pathogenesis in Drosophila models. RNA Biol 6, 464–478.

    Article  PubMed  CAS  Google Scholar 

  • Mallik M. and Lakhotia S. C. 2009b The developmentally active and stress-inducible noncoding hsrω gene is a novel regulator of apoptosis in Drosophila. Genetics 183, 831–852.

    Article  PubMed  CAS  Google Scholar 

  • Mallik M. and Lakhotia S. C. 2010 Improved activities of CREBbinding protein, heterogenous RNA binding proteins and proteasome following downregulation of noncoding hsromega transcripts help suppress polyQ pathogenesis in fly models. Genetics 184, 927–945.

    Article  PubMed  CAS  Google Scholar 

  • Margolis R. L. and Ross C. A. 2001 Expansion explosion: new clues to the pathogenesis of repeat expansion neurodegenerative diseases. Trends Mol. Med. 7, 479–482.

    Article  PubMed  CAS  Google Scholar 

  • Marsh J. L. and Thompson L. M. 2004 Can flies help humans treat neurodegenerative diseases? BioEssays 26, 485–496.

    Article  PubMed  CAS  Google Scholar 

  • Marsh J. L. and Thompson L. M. 2006 Drosophila in the study of neurodegenerative disease. Neuron 52, 169–178.

    Article  PubMed  CAS  Google Scholar 

  • Marsh J. L., Walker H., Theisen H., Zhu Y. Z., Fielder T., Purcell J. et al. 2000 Expanded polyglutamine peptides alone are intrinsically cytotoxic and cause neurodegeneration in Drosophila. Hum. Mol. Genet. 9, 13–25.

    Article  PubMed  CAS  Google Scholar 

  • Marsh J. L., Lukacsovich T. and Thompson L. M. 2009 Animal models of polyglutamine diseases and therapeutic approaches. J. Biol. Chem. 284, 7431–7435.

    Article  PubMed  CAS  Google Scholar 

  • Masino L., Nicastro G., Menon R. P., Dal Piaz F., Calder L. and Pastore A. 2004 Characterization of the structure and the amyloidogenic properties of the Josephin domain of the polyglutaminecontaining protein Ataxin-3. J. Mol. Biol. 344, 1021–1035.

    Article  PubMed  CAS  Google Scholar 

  • Matilla A., Gorbea C., Einum D. D., Townsend J., Michalik A., van Broeckhoven C. et al. 2001 Association of Ataxin-7 with the proteasome subunit S4 of the 19S regulatory complex. Hum. Mol. Genet. 10, 2821–2831.

    Article  PubMed  CAS  Google Scholar 

  • Matilla-Duenas A., Goold R. and Giunti P. 2007 Clinical, genetic, molecular, and pathophysiological insights into spinocerebellar ataxia type 1. Cerebellum 7, 106–114.

    Article  CAS  Google Scholar 

  • Matsumoto M., Yada M., Hatakeyama S., Ishimoto H., Tanimura T., Tsuji S. et al. 2004 Molecular clearance of Ataxin-3 is regulated by a mammalian E4. EMBO J. 23, 659–669.

    Article  PubMed  CAS  Google Scholar 

  • Matsuura T., Yamagata T., Burgess D. L., Rasmussen A., Grewal R. P., Watase K. et al. 2000 Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat. Genet. 26, 191–194.

    Article  PubMed  CAS  Google Scholar 

  • McCampbell A., Taylor J. P., Taye A. A., Robitschek J., Li M., Walcott J. et al. 2000 CREB-binding protein sequestration by expanded polyglutamine. Hum. Mol. Genet. 9, 2197–2202.

    Article  PubMed  CAS  Google Scholar 

  • McMahon S. J., Pray-Grant M. G., Schieltz D., Yates J. R. III and Grant P. A. 2005 Polyglutamine-expanded spinocerebellar ataxia-7 protein disrupts normal SAGA and SLIK histone acetyltransferase activity. Proc. Natl. Acad. Sci. USA 102, 8478–8482.

    Article  PubMed  CAS  Google Scholar 

  • McManus K., Scannell C. A., Rutherford S. and Carey C. C. 2006 Canalization and evolvability: tempering the effects of mutation in a changing environment. In Radiation risk estimates in normal and emergency situations (ed. A. A. Cigna and M. Durante), pp. 283–290. Springer Science and Buisness Media, The Netherlands.

    Chapter  Google Scholar 

  • Merenstein S. A., Sobesky W. E., Taylor A. K., Riddle J. E., Tran H. X. and Hagerman R. J. 1996 Molecular-clinical correlations in males with an expanded FMR1 mutation. Am. J. Med. Genet. 64, 388–394.

    Article  PubMed  CAS  Google Scholar 

  • Merienne K., Helmlinger D., Perkin G. R., Devys D. and Trottier Y. 2003 Polyglutamine expansion induces a protein-damaging stress connecting heat shock protein 70 to the JNK pathway. J. Biol. Chem. 278, 16957–16967.

    Article  PubMed  CAS  Google Scholar 

  • Meriin A. B., Zhang X., Miliaras N. B., Kazantsev A., Chernoff Y. O., McCaffery J. M. et al. 2003 Aggregation of expanded polyglutamine domain in yeast leads to defects in endocytosis. Mol. Cell Biol. 23, 7554–7565.

    Article  PubMed  CAS  Google Scholar 

  • Miller V.M., Nelson R. F., Gouvion C. M., Williams A., Rodriguez-Lebron E., Harper S. Q. et al. 2005 CHIP suppresses polyglutamine aggregation and toxicity in vitro and in vivo. J. Neurosci. 25, 9152–9161.

    Article  PubMed  CAS  Google Scholar 

  • Minamiyama M., Katsuno M., Adachi H., Waza M., Sang C., Kobayashi Y. et al. 2004 Sodium butyrate ameliorates phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Hum. Mol. Genet. 13, 1183–1192.

    Article  PubMed  CAS  Google Scholar 

  • Morante J., Desplan C. and Celik A. 2007 Generating patterned arrays of photoreceptors. Curr. Opin. Genet. Dev. 17, 314–319.

    Article  PubMed  CAS  Google Scholar 

  • Morfini G., Pigino G., Szebenyi G., You Y., Pollema S. and Brady S. T. 2006 JNK mediates pathogenic effects of polyglutamineexpanded androgen receptor on fast axonal transport. Nat. Neurosci. 9, 907–916.

    Article  PubMed  CAS  Google Scholar 

  • Morin X., Daneman R., Zavortink M. and Chia W. 2001 A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc. Natl. Acad. Sci. USA 98, 15050–15055.

    Article  PubMed  CAS  Google Scholar 

  • Moseley M. L., Zu T., Ikeda Y., Gao W., Mosemiller A. K., Daughters R. S. et al. 2006 Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat. Genet. 38, 758–769.

    Article  PubMed  CAS  Google Scholar 

  • Muchowski P. J. and Wacker J. L. 2005 Modulation of neurodegeneration by molecular chaperones. Nat. Rev. Neurosci. 6, 11–22.

    Article  PubMed  CAS  Google Scholar 

  • Muchowski P. J., Schaffar G., Sittler A., Wanker E. E., Hayer-Hartl M. K. and Hartl F. U. 2000 Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc. Natl. Acad. Sci. USA 97, 7841–7846.

    Article  PubMed  CAS  Google Scholar 

  • Mugat B., Parmentier M. L., Bonneaud N., Chan H. Y. and Maschat F. 2008 Protective role of Engrailed in a Drosophila model of Huntington’s disease. Hum. Mol. Genet. 17, 3601–3616.

    Article  PubMed  CAS  Google Scholar 

  • Mulley J. C., Yu S., Loesch D. Z., Hay D. A., Donnelly A., Gedeon A. K. et al. 1995 FRAXE and mental retardation. J. Med. Genet. 32, 162–169.

    Article  PubMed  CAS  Google Scholar 

  • Muqit M. M. and Feany M. B. 2002 Modelling neurodegenerative diseases in Drosophila: a fruitful approach? Nat. Rev. Neurosci. 3, 237–243.

    Article  PubMed  CAS  Google Scholar 

  • Murata T., Suzuki E., Ito S., Sawatsubashi S., Zhao Y., Yamagata K. et al. 2008 RNA-binding protein hoip accelerates polyQ-induced neurodegeneration in Drosophila. Biosci. Biotechnol. Biochem. 72, 2255–2261.

    Article  PubMed  CAS  Google Scholar 

  • Nagafuchi S., Yanagisawa H., Sato K., Shirayama T., Ohsaki E., Bundo M. et al. 1994 Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat. Genet. 6, 14–18.

    Article  PubMed  CAS  Google Scholar 

  • Nagai Y., Fujikake N., Ohno K., Higashiyama H., Popiel H. A., Rahadian J. et al. 2003 Prevention of polyglutamine oligomerization and neurodegeneration by the peptide inhibitor QBP1 in Drosophila. Hum. Mol. Genet. 12, 1253–1259.

    Article  PubMed  CAS  Google Scholar 

  • Nagai Y., Fujikake N., Popiel H. A. and Wada K. 2010 Induction of molecular chaperones as a therapeutic strategy for the polyglutamine diseases. Curr. Pharm. Biotechnol. 11, 188–197.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K., Jeong S. Y., Uchihara T., Anno M., Nagashima K., Nagashima T. et al. 2001 SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATAbinding protein. Hum. Mol. Genet. 10, 1441–1448.

    Article  PubMed  CAS  Google Scholar 

  • Nemes J. P., Benzow K. A., Moseley M. L., Ranum L. P. and Koob M. D. 2000 The SCA8 transcript is an antisense RNA to a brain-specific transcript encoding a novel actin-binding protein (KLHL1). Hum. Mol. Genet. 9, 1543–1551.

    Article  PubMed  CAS  Google Scholar 

  • Nollen E. A., Garcia S.M., van Haaften G., Kim S., Chavez A., Morimoto R. I. et al. 2004 Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc. Natl. Acad. Sci. USA 101, 6403–6408.

    Article  PubMed  CAS  Google Scholar 

  • Nozaki K., Onodera O., Takano H. and Tsuji S. 2001 Amino acid sequences flanking polyglutamine stretches influence their potential for aggregate formation. Neuroreport 12, 3357–3364.

    Article  PubMed  CAS  Google Scholar 

  • Nucifora Jr F. C., Sasaki M., Peters M. F., Huang H., Cooper J. K., Yamada M. et al. 2001 Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291, 2423–2428.

    Article  PubMed  CAS  Google Scholar 

  • Okazawa H. 2003 Polyglutamine diseases: a transcription disorder? Cell. Mol. Life Sci. 60, 1427–1439.

    Article  PubMed  CAS  Google Scholar 

  • Ona V. O., Li M., Vonsattel J. P., Andrews L. J., Khan S. Q., Chung W. M. et al. 1999 Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature 399, 263–267.

    Article  PubMed  CAS  Google Scholar 

  • Orr H. T. 2001 Beyond the Qs in the polyglutamine diseases. Genes Dev. 15, 925–932.

    Article  PubMed  CAS  Google Scholar 

  • Orr H. T. and Zoghbi H. Y. 2007 Trinucleotide repeat disorders. Annu. Rev. Neurosci. 30, 575–621.

    Article  PubMed  CAS  Google Scholar 

  • Orr H. T., Chung M. Y., Banfi S., Kwiatkowski Jr T. J., Servadio A., Beaudet A. L. et al. 1993 Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat. Genet. 4, 221–226.

    Article  PubMed  CAS  Google Scholar 

  • Palhan V. B., Chen S., Peng G. H., Tjernberg A., Gamper A.M., Fan Y. et al. 2005 Polyglutamine-expanded Ataxin-7 inhibits STAGA histone acetyltransferase activity to produce retinal degeneration. Proc. Natl. Acad. Sci. USA 102, 8472–8477.

    Article  PubMed  CAS  Google Scholar 

  • Pallos J., Bodai L., Lukacsovich T., Purcell J. M., Steffan J. S., Thompson L. M. et al. 2008 Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington’s disease. Hum. Mol. Genet. 17, 3767–3775.

    Article  PubMed  CAS  Google Scholar 

  • Pandey U. B., Nie Z., Batlevi Y., McCray B. A., Ritson G. P., Nedelsky N. B. et al. 2007 HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 859–863.

    Article  PubMed  CAS  Google Scholar 

  • Pandolfo M. 2002a Iron metabolism and mitochondrial abnormalities in Friedreich ataxia. Blood Cells Mol. Dis. 29, 536–547; discussion 548–552.

    Article  PubMed  CAS  Google Scholar 

  • Pandolfo M. 2002b The molecular basis of Friedreich ataxia. Adv. Exp. Med. Biol. 516, 99–118.

    Article  PubMed  CAS  Google Scholar 

  • Panov A. V., Gutekunst C. A., Leavitt B. R., Hayden M. R., Burke J. R., Strittmatter W. J. et al. 2002 Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat. Neurosci. 5, 731–736.

    PubMed  CAS  Google Scholar 

  • Park Y., Hong S., Kim S. J. and Kang S. 2005 Proteasome function is inhibited by polyglutamine-expanded Ataxin-1, the SCA1 gene product. Mol. Cell 19, 23–30.

    Article  CAS  Google Scholar 

  • Paulson H. L. and Fischbeck K. H. 1996 Trinucleotide repeats in neurogenetic disorders. Annu. Rev. Neurosci. 19, 79–107.

    Article  PubMed  CAS  Google Scholar 

  • Paulson H. L., Das S. S., Crino P. B., Perez M. K., Patel S. C., Gotsdiner D. et al. 1997a Machado-Joseph disease gene product is a cytoplasmic protein widely expressed in brain. Ann. Neurol. 41, 453–462.

    Article  PubMed  CAS  Google Scholar 

  • Paulson H. L., Perez M. K., Trottier Y., Trojanowski J. Q., Subramony S. H., Das S. S. et al. 1997b Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19, 333–344.

    Article  PubMed  CAS  Google Scholar 

  • Pearl L. H. and Prodromou C. 2006 Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu. Rev. Biochem. 75, 271–294.

    Article  PubMed  CAS  Google Scholar 

  • Pearson C. E., Edamura K. N. and Cleary J. D. 2005 Repeat instability: Mechanisms of dynamic mutations. Nat. Rev. Genet. 6, 729–742.

    Article  PubMed  CAS  Google Scholar 

  • Perez M. K., Paulson H. L., Pendse S. J., Saionz S. J., Bonini N. M. and Pittman R. N. 1998 Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J. Cell Biol. 143, 1457–1470.

    Article  PubMed  CAS  Google Scholar 

  • Piccioni F., Pinton P., Simeoni S., Pozzi P., Fascio U., Vismara G. et al. 2002 Androgen receptor with elongated polyglutamine tract forms aggregates that alter axonal trafficking and mitochondrial distribution in motor neuronal processes. FASEB J. 16, 1418–1420.

    PubMed  CAS  Google Scholar 

  • Plassart E. and Fontaine B. 1994 Genes with triplet repeats — a new class of mutations causing neurological diseases. Biomed. Pharmacother. 48, 191–197.

    Article  PubMed  CAS  Google Scholar 

  • Prasanth K. V., Rajendra T. K., Lal A. K. and Lakhotia S. C. 2000 Omega speckles — a novel class of nuclear speckles containing hnRNPs associated with noncoding hsr-omega RNA in Drosophila. J. Cell Sci. 113, 3485–3497.

    PubMed  CAS  Google Scholar 

  • Puccio H., Simon D., Cossee M., Criqui-Filipe P., Tiziano F., Melki J. et al. 2001 Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat. Genet. 27, 181–186.

    Article  PubMed  CAS  Google Scholar 

  • Quinn W. Q., Harris W. A. and Benzer S. 1974 Conditioned behaviour in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 71, 708–712.

    Article  PubMed  CAS  Google Scholar 

  • Rangone H., Pardo R., Colin E., Girault J. A., Saudou F. and Humbert S. 2005 Phosphorylation of arfaptin 2 at Ser260 by Akt inhibits polyQ-Huntingtin induced toxicity by rescuing proteasome impairment. J. Biol Chem. 280, 22021–22028.

    Article  PubMed  CAS  Google Scholar 

  • Ravikumar B., Vacher C., Berger Z., Davies J. E., Luo S., Oroz L. G. et al. 2004 Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585–595.

    Article  PubMed  CAS  Google Scholar 

  • Ravikumar B., Imarisio S., Sarkar S., O’Kane C. J. and Rubinsztein D. C. 2008 Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J. Cell Sci. 121, 1649–1660.

    Article  PubMed  CAS  Google Scholar 

  • Reiter L. T. and Bier E. 2002 Using Drosophila melanogaster to uncover human disease gene function and potential drug target proteins. Expert Opin. Ther. Tar. 6, 387–399.

    Article  CAS  Google Scholar 

  • Reiter L. T., Potocki L., Chien S., Gribskov M. and Bier E. 2001 A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res. 11, 1114–1125.

    Article  PubMed  CAS  Google Scholar 

  • Restifo L. L. 2005 Mental retardation genes in Drosophila: New approaches to understanding and treating developmental brain disorders. Ment. Retard. Dev. Disabil. Res. Rev. 11, 286–294.

    Article  PubMed  Google Scholar 

  • Rong J., Li S., Sheng G., Wu M., Coblitz B., Li M. et al. 2007 14-3-3 protein interacts with huntingtin-associated protein 1 and regulates its trafficking. J. Biol. Chem. 282, 4748–4756.

    Article  PubMed  CAS  Google Scholar 

  • Rorth P. 1996 A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc. Natl. Acad. Sci. USA 93, 12418–12422.

    Article  PubMed  CAS  Google Scholar 

  • Ross C. A. and Poirier M. A. 2004 Protein aggregation and neurodegenerative disease. Nat. Med. 10, suppl. 10–17.

    Google Scholar 

  • Rouaux C., Loeffler J. P. and Boutillier A. L. 2004 Targeting CREBbinding protein (CBP) loss of function as a therapeutic strategy in neurological disorders. Biochem. Pharmacol. 68, 1157–1164.

    Article  PubMed  CAS  Google Scholar 

  • Rousseau E., Kojima R., Hoffner G., Djian P. and Bertolotti A. 2009 Misfolding of proteins with a polyglutamine expansion is facilitated by proteasomal chaperones. J. Biol. Chem. 16, 1917–1929.

    Google Scholar 

  • Rubin G. M., Yandell M. D., Wortman J. R., Gabor Miklos G. L., Nelson C. R., Hariharan I. K. et al. 2000 Comparative genomics of the eukaryotes. Science 287, 2204–2215.

    Article  PubMed  CAS  Google Scholar 

  • Runne H., Regulier E., Kuhn A., Zala D., Gokce O., Perrin V. et al. 2008 Dysregulation of gene expression in primary neuron models of Huntington’s disease shows that polyglutamine-related effects on the striatal transcriptome may not be dependent on brain circuitry. J. Neurosci. 28, 9723–9731.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez I., Xu C. J., Juo P., Kakizaka A., Blenis J. and Yuan J. 1999 Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron 22, 623–633.

    Article  PubMed  CAS  Google Scholar 

  • Sang T. K. and Jackson G. R. 2005 Drosophila models of neurodegenerative disease. NeuroTherapeutics 2, 438–446.

    Article  Google Scholar 

  • Sang T. K., Li C., Liu W., Rodriguez A., Abrams J. M., Zipursky S. L. et al. 2005 Inactivation of Drosophila Apaf-1 related killer suppresses formation of polyglutamine aggregates and blocks polyglutamine pathogenesis. Hum. Mol. Genet. 14, 357–372.

    Article  PubMed  CAS  Google Scholar 

  • Sapp E., Schwarz C., Chase K., Bhide P. G., Young A. B., Penney J. et al. 1997 Huntingtin localization in brains of normal and Huntington’s disease patients. Ann. Neurol. 42, 604–612.

    Article  PubMed  CAS  Google Scholar 

  • Satyal S. H., Schmidt E., Kitagawa K., Sondheimer N., Lindquist S., Kramer J. M. et al. 2000 Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 97, 5750–5755.

    Article  PubMed  CAS  Google Scholar 

  • Saudou F., Finkbeiner S., Devys D. and Greenberg M. E. 1998 Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55–66.

    Article  PubMed  CAS  Google Scholar 

  • Sawa A. 2001 Mechanisms for neuronal cell death and dysfunction in Huntington’s disease: pathological cross-talk between the nucleus and the mitochondria? J. Mol. Med. 79, 375–381.

    Article  PubMed  CAS  Google Scholar 

  • Scappini E., Koh T. W., Martin N. P. and O’Bryan J. P. 2007 Intersectin enhances huntingtin aggregation and neurodegeneration through activation of c-Jun-NH2-terminal kinase. Hum. Mol. Genet. 16, 1862–1871.

    Article  PubMed  CAS  Google Scholar 

  • Schaffar G., Breuer P., Boteva R., Behrends C., Tzvetkov N., Strippel N. et al. 2004 Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol. Cell 15, 95–105.

    Article  PubMed  CAS  Google Scholar 

  • Schilling B., Gafni J., Torcassi C., Cong X., Row R. H., LaFevre-Bernt M. A. et al. 2006 Huntingtin phosphorylation sites mapped by mass spectrometry: Modulation of cleavage and toxicity. J. Biol. Chem. 281, 23686–23697.

    Article  PubMed  CAS  Google Scholar 

  • Senoo-Matsuda N., Igaki T. and Miura M. 2005 Bax-like protein Drob-1 protects neurons from expanded polyglutamine-induced toxicity in Drosophila. EMBO J. 24, 2700–2713.

    Article  PubMed  CAS  Google Scholar 

  • Sengupta S. and Lakhotia S. C. 2006 Altered expression of the noncoding hsrω gene enhances poly-Q-induced neurotoxicity in Drosophila. RNA Biol. 3, 28–35.

    Article  PubMed  CAS  Google Scholar 

  • Servadio A., Koshy B., Armstrong D., Antalffy B., Orr H. T. and Zoghbi H. Y. 1995 Expression analysis of the Ataxin-1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals. Nat. Genet. 10, 94–98.

    Article  PubMed  CAS  Google Scholar 

  • Sherman M. Y. and Goldberg A. L. 2001 Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29, 15–32.

    Article  PubMed  CAS  Google Scholar 

  • Shibata H., Huynh D. P. and Pulst S. M. 2000 A novel protein with RNA-binding motifs interacts with Ataxin-2. Hum. Mol. Genet. 9, 1303–1313.

    Article  PubMed  CAS  Google Scholar 

  • Shimohata T., Nakajima T., Yamada M., Uchida C., Onodera O., Naruse S. et al. 2000a Expanded polyglutamine stretches interact with TAFII130, interfering with CREB-dependent transcription. Nat. Genet. 26, 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Shimohata T., Onodera O. and Tsuji S. 2000b Interaction of expanded polyglutamine stretches with nuclear transcription factors leads to aberrant transcriptional regulation in polyglutamine diseases. Neuropathology 20, 326–333.

    Article  PubMed  CAS  Google Scholar 

  • Sinadinos C., Burbidge-King T., Soh D., Thompson L. M., Marsh J. L. and Wyttenbach A. 2009 Live axonal transport disruption by mutant huntingtin fragments in Drosophila motor neuron axons. Neurobiol. Dis. 34, 389–395.

    Article  PubMed  CAS  Google Scholar 

  • Sittler A., Walter S., Wedemeyer N., Hasenbank R., Scherzinger E., Eickhoff H. et al. 1998 SH3GL3 associates with the Huntingtin exon 1 protein and promotes the formation of polygln-containing protein aggregates. Mol. Cell 2, 427–436.

    Article  PubMed  CAS  Google Scholar 

  • Skinner P. J., Koshy B. T., Cummings C. J., Klement I. A., Helin K., Servadio A. et al. 1997 Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures. Nature 389, 971–974.

    Article  PubMed  CAS  Google Scholar 

  • Sofola O. A., Jin P., Qin Y., Duan R., Liu H., de Haro M. et al. 2007 RNA-binding proteins hnRNP A2/B1 and CUGBP1 suppress fragile X CGG premutation repeat-induced neurodegeneration in a Drosophila model of FXTAS. Neuron 55, 565–571.

    Article  PubMed  CAS  Google Scholar 

  • Sopher B. L., Thomas Jr P. S., LaFevre-Bernt M. A., Holm I. E., Wilke S. A., Ware C. B. et al. 2004 Androgen receptor YAC transgenic mice recapitulate SBMA motor neuronopathy and implicate VEGF164 in the motor neuron degeneration. Neuron 41, 687–699.

    Article  PubMed  CAS  Google Scholar 

  • Steffan J. S., Kazantsev A., Spasic-Boskovic O., Greenwald M., Zhu Y. Z., Gohler H. et al. 2000 The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl. Acad. Sci. USA 97, 6763–6768.

    Article  PubMed  CAS  Google Scholar 

  • Steffan J. S., Bodai L., Pallos J., Poelman M., McCampbell A., Apostol B. L. et al. 2001 Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413, 739–743.

    Article  PubMed  CAS  Google Scholar 

  • Steffan J. S., Agrawal N., Pallos J., Rockabrand E., Trotman L. C., Slepko N. et al. 2004 SUMO modification of Huntingtin and Huntington’s disease pathology. Science 304, 100–104.

    Article  PubMed  CAS  Google Scholar 

  • Stenoien D. L., Cummings C. J., Adams H. P., Mancini M. G., Patel K., DeMartino G. N. et al. 1999 Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. Hum. Mol. Genet. 8, 731–741.

    Article  PubMed  CAS  Google Scholar 

  • Stenoien D. L., Mielke M. and Mancini M. A. 2002 Intranuclear Ataxin-1 inclusions contain both fast- and slow-exchanging components. Nat. Cell Biol. 4, 806–810.

    Article  PubMed  CAS  Google Scholar 

  • Strand A. D., Baquet Z. C., Aragaki A. K., Holmans P., Yang L., Cleren C. et al. 2007 Expression profiling of Huntington’s disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. J. Neurosci. 27, 11758–11768.

    Article  PubMed  CAS  Google Scholar 

  • Sugars K. L. and Rubinsztein D. C. 2003 Transcriptional abnormalities in Huntington disease. Trends Genet. 19, 233–238.

    Article  PubMed  CAS  Google Scholar 

  • Szebenyi G., Morfini G. A., Babcock A., Gould M., Selkoe K., Stenoien D. L. et al. 2003 Neuropathogenic forms of huntingtin and androgen receptor inhibit fast axonal transport. Neuron 40, 41–52.

    Article  PubMed  CAS  Google Scholar 

  • Takeyama K., Ito S., Yamamoto A., Tanimoto H., Furutani T., Kanuka H. et al. 2002 Androgen-dependent neurodegeneration by polyglutamine-expanded human androgen receptor in Drosophila. Neuron 35, 855–864.

    Article  PubMed  CAS  Google Scholar 

  • Taylor J. P., Taye A. A., Campbell C., Kazemi-Esfarjani P., Fischbeck K. H. and Min K. T. 2003 Aberrant histone acetylation, altered transcription, and retinal degeneration in a Drosophila model of polyglutamine disease are rescued by CREB-binding protein. Genes Dev. 17, 1463–1468.

    Article  PubMed  CAS  Google Scholar 

  • Thakur A. K., Jayaraman M., Mishra R., Thakur M., Chellgren V. M., Byeon I. J. L. et al. 2009 Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nat. Struct. Mol. Biol. 16, 380–389.

    Article  PubMed  CAS  Google Scholar 

  • The Huntington’s disease collaborative research group 1993 A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983.

    Article  Google Scholar 

  • Tsai C. C., Kao H. Y., Mitzutani A., Banayo E., Rajan H., McKeown M. et al. 2004 Ataxin-1, a SCA1 neurodegenerative disorder protein, is functionally linked to the silencing mediator of retinoid and thyroid hormone receptors. Proc. Natl. Acad. Sci. USA 101, 4047–4052.

    Article  PubMed  CAS  Google Scholar 

  • Van Dam D., Errijgers V., Kooy R. F., Willemsen R., Mientjes E., Oostra B. A. et al. 2005 Cognitive decline, neuromotor and behavioural disturbances in a mouse model for fragile-X-associated tremor/ataxia syndrome (FXTAS). Behav. Brain Res. 162, 233–239.

    Article  PubMed  CAS  Google Scholar 

  • Venkatraman P., Wetzel R., Tanaka M., Nukina N. and Goldberg A. L. 2004 Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutaminecontaining proteins. Mol. Cell 14, 95–104.

    Article  PubMed  CAS  Google Scholar 

  • Verkerk A., Pieretti M., Sutcliffe J. S., Fu Y. H., Kuhl D. P. A., Pizzuti A. et al. 1991 Identification of a gene (Fmr-1) containing a cgg repeat coincident with a breakpoint cluster region exhibiting length variation in fragile-X syndrome. Cell 65, 905–914.

    Article  PubMed  CAS  Google Scholar 

  • Vig P. J., Subramony S. H. and McDaniel D. O. 2001 Calcium homeostasis and spinocerebellar ataxia-1 (SCA-1). Brain Res. Bull. 56, 221–225.

    Article  PubMed  CAS  Google Scholar 

  • Virtaneva K., D’Amato E., Miao J., Koskiniemi M., Norio R., Avanzini G. et al. 1997 Unstable minisatellite expansion causing recessively inherited myoclonus epilepsy, EPM1. Nat. Genet. 15, 393–396.

    Article  PubMed  CAS  Google Scholar 

  • Voisine C. and Hart A. C. 2004 Caenorhabditis elegans as a model system for triplet repeat diseases. Methods Mol. Biol. 277, 141–160.

    PubMed  CAS  Google Scholar 

  • Vonsattel J. P., Myers R. H., Stevens T. J., Ferrante R. J., Bird E. D. and Richardson E. P. 1985 Neuropathological Classification of Huntingtons-Disease. J. Neuropathol. Exp. Neurol. 44, 559–577.

    Article  PubMed  CAS  Google Scholar 

  • Walters R. H. and Murphy R. M. 2009 Examining polyglutamine peptide length: a connection between collapsed conformations and increased aggregation. J. Mol. Biol. 393, 978–992.

    Article  PubMed  CAS  Google Scholar 

  • Wang G. H., Mitsui K., Kotliarova S., Yamashita A., Nagao Y., Tokuhiro S. et al. 1999 Caspase activation during apoptotic cell death induced by expanded polyglutamine in N2a cells. Neuroreport 10, 2435–2438.

    Article  PubMed  CAS  Google Scholar 

  • Warrick J. M., Chan H. Y., Gray-Board G. L., Chai Y., Paulson H. L. and Bonini N. M. 1999 Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat. Genet. 23, 425–428.

    Article  PubMed  CAS  Google Scholar 

  • Warrick J. M., Paulson H. L., Gray-Board G. L., Bui Q. T., Fischbeck K. H., Pittman R. N. et al. 1998 Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 93, 939–949.

    Article  PubMed  CAS  Google Scholar 

  • Warrick J. M., Morabito L. M., Bilen J., Gordesky-Gold B., Faust L. Z., Paulson H. L. et al. 2005 Ataxin-3 suppresses polyglutamine neurodegeneration in Drosophila by a ubiquitinassociated mechanism. Mol. Cell 18, 37–48.

    Article  PubMed  CAS  Google Scholar 

  • Watase K., Weeber E. J., Xu B., Antalffy B., Yuva-Paylor L., Hashimoto K. et al. 2002 A long CAG repeat in the mouse Sca1 locus replicates SCA1 features and reveals the impact of protein solubility on selective neurodegeneration. Neuron 34, 905–919.

    Article  PubMed  CAS  Google Scholar 

  • Waza M., Adachi H., Katsuno M., Minamiyama M., Tanaka F., Doyu M. et al. 2006 Modulation of Hsp90 function in neurodegenerative disorders: a molecular-targeted therapy against disease-causing protein. J. Mol. Med. 84, 635–646.

    Article  PubMed  CAS  Google Scholar 

  • Wellington C. L. and Hayden M. R. 2000 Caspases and neurodegeneration: on the cutting edge of new therapeutic approaches. Clin. Genet. 57, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Wellington C. L., Ellerby L. M., Hackam A. S., Margolis R. L., Trifiro M. A., Singaraja R. et al. 1998 Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J. Biol. Chem. 273, 9158–9167.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler T.M. and Thornton C. A. 2007 Myotonic dystrophy: RNAmediated muscle disease. Curr. Opin. Neurol. 20, 572–576.

    Article  PubMed  CAS  Google Scholar 

  • Williams A. J., Knutson T. M., Colomer Gould V. F. and Paulson H. L. 2009 In vivo suppression of polyglutamine neurotoxicity by C-terminus of Hsp70-interacting protein (CHIP) supports an aggregation model of pathogenesis. Neurobiol. Dis. 33, 342–353.

    Article  PubMed  CAS  Google Scholar 

  • Willingham S., Outeiro T. F., DeVit M. J., Lindquist S. L. and Muchowski P. J. 2003 Yeast genes that enhance the toxicity of a mutant huntingtin fragment or alpha-synuclein. Science 302, 1769–1772.

    Article  PubMed  CAS  Google Scholar 

  • Wolff T. and Ready D. F. 1993 Pattern Formation in the Drosophila Retina. In The development of Drosophila melanogaster (ed. M. Bate and A. M. Arias), pp. 1277–1326. Cold Spring Harbor Laboratory Press, New York, USA.

    Google Scholar 

  • Wu L. L., Fan Y., Li S., Li X. J. and Zhou X. F. 2010 Huntingtin-associated protein-1 interacts with pro-brain-derived neurotrophic factor and mediates its transport and release. J. Biol. Chem. 285, 5614–5623.

    Article  PubMed  CAS  Google Scholar 

  • Wyttenbach A. 2004 Role of heat shock proteins during polyglutamine neurodegeneration: mechanisms and hypothesis. J. Mol. Neurosci. 23, 69–96.

    Article  PubMed  CAS  Google Scholar 

  • Wyttenbach A., Carmichael J., Swartz J., Furlong R. A., Narain Y., Rankin J. et al. 2000 Effects of heat shock, heat shock protein 40 (HDJ-2), and proteasome inhibition on protein aggregation in cellular models of Huntington’s disease. Proc. Natl. Acad. Sci. USA 97, 2898–2903.

    Article  PubMed  CAS  Google Scholar 

  • Wyttenbach A., Sauvageot O., Carmichael J., Diaz-Latoud C., Arrigo A. P. and Rubinsztein D. C. 2002 Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum. Mol. Genet. 11, 1137–1151.

    Article  PubMed  CAS  Google Scholar 

  • Yakura H., Wakisaka A., Fujimoto S. and Itakura K. 1974 Letter: Hereditary ataxia and HL-A. N. Engl. J. Med. 291, 154–155.

    PubMed  CAS  Google Scholar 

  • Yang W., Dunlap J. R., Andrews R. B. and Wetzel R. 2002 Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum. Mol. Genet. 11, 2905–2917.

    Article  PubMed  CAS  Google Scholar 

  • Yoo S. Y., Pennesi M. E., Weeber E. J., Xu B., Atkinson R., Chen S. et al. 2003 SCA7 knockin mice model human SCA7 and reveal gradual accumulation of mutant Ataxin-7 in neurons and abnormalities in short-term plasticity. Neuron 37, 383–401.

    Article  PubMed  CAS  Google Scholar 

  • Yvert G., Lindenberg K. S., Devys D., Helmlinger D., Landwehrmeyer G. B. and Mandel J. L. 2001 SCA7 mouse models show selective stabilization of mutant Ataxin-7 and similar cellular responses in different neuronal cell types. Hum. Mol. Genet. 10, 1679–1692.

    Article  PubMed  CAS  Google Scholar 

  • Zander C., Takahashi J., El Hachimi K. H., Fujigasaki H., Albanese V., Lebre A. S. et al. 2001 Similarities between spinocerebellar ataxia type 7 (SCA7) cell models and human brain: proteins recruited in inclusions and activation of caspase-3. Hum. Mol. Genet. 10, 2569–2579.

    Article  PubMed  CAS  Google Scholar 

  • Zhang S., Xu L., Lee J. and Xu T. 2002 Drosophila atrophin homolog functions as a transcriptional corepressor in multiple developmental processes. Cell 108, 45–56.

    Article  PubMed  CAS  Google Scholar 

  • Zhang S., Binari R., Zhou R. and Perrimon N. 2010 A genomewide RNA interference screen for modifiers of aggregates formation by mutant Huntingfin in Drosophila Genetics 184, 1165–1179.

    Article  PubMed  CAS  Google Scholar 

  • Zhou B. P., Liao Y., Xia W., Zou Y., Spohn B. and Hung M. C. 2001 HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat. Cell Biol. 3, 973–982.

    Article  PubMed  CAS  Google Scholar 

  • Zhuchenko O., Bailey J., Bonnen P., Ashizawa T., Stockton D. W., Amos C. et al. 1997 Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat. Genet. 15, 62–69.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash C. Lakhotia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallik, M., Lakhotia, S.C. Modifiers and mechanisms of multi-system polyglutamine neurodegenerative disorders: lessons from fly models. J Genet 89, 497 (2010). https://doi.org/10.1007/s12041-010-0072-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-010-0072-4

Keywords

Navigation