Skip to main content
Log in

Complex genetic interactions govern the temporal effects of Antennapedia on antenna-to-leg transformations in Drosophila melanogaster

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The putative regulatory relationships between Antennapedia (Antp), spalt major (salm) and homothorax (hth) are tested with regard to the sensitive period of antenna-to-leg transformations. Although Antp expression repressed hth as predicted, contrary to expectations, hth did not show increased repression at higher Antp doses, whereas salm, a gene downstream of hth, did show such a dose response. Loss of hth allowed antenna-to-leg transformations but the relative timing of proximal-distal transformations was reversed, relative to transformations induced by ectopic Antp. Finally, overexpression of Hth was only partially able to rescue transformations induced by ectopic Antp. These results indicate that there may be additional molecules involved in antenna/leg identity and that spatial, temporal and dosage relationships are more subtle than suspected and must be part of a robust understanding of molecular network behaviour involved in determining appendage identity in Drosophila melanogaster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angelini D. R. and Kaufman T. C. 2004 Functional analysis in the hemipteran Oncopeltus fasciatus reveal conserved and derived aspects of appendage patterning in insects. Dev. Biol. 271, 306–321.

    Article  PubMed  CAS  Google Scholar 

  • Azpiazu N. and Morata G. 2002 Distinct functions of homothorax in leg development in Drosophila. Mech. Dev. 119, 55–67.

    Article  PubMed  CAS  Google Scholar 

  • Beermann A. and Schroder R. 2004 Functional stability of the aristaless gene in appendage tip formation during evolution. Dev. Genes Evol. 214, 303–308.

    Article  PubMed  CAS  Google Scholar 

  • Beermann A., Jay D. G., Beeman R. W., Hulskamp M., Tautz D. and Jurgens G. 2001 The Short antennae gene of Tribolium is required for limb development and encodes the orthologue of the Drosophila Distal-less protein. Development 128, 287–297.

    PubMed  CAS  Google Scholar 

  • Bhojwani J., Shashidhara L. S. and Sinha P. 1997 Requirement of teashirt (tsh) function during cell fate specification in developing head structures in Drosophila. Dev. Genes Evol. 207, 137–146.

    Article  CAS  Google Scholar 

  • Cabrera G. R., Godt D., Fang P.-Y., Couderc, J.-L. and Laski F. A. 2002 Expression pattern of Gal4 enhancer trap insertions into the bric à brac locus generated by P element replacement. Genesis 34, 62–65.

    Article  PubMed  CAS  Google Scholar 

  • Casares F. and Mann R. S. 1998 Control of antennal vs leg development in Drosophila. Nature 392, 723–726.

    Article  PubMed  CAS  Google Scholar 

  • Chu J., Dong P. D. and Panganiban G. 2002 Limb type-specific regulation of bric-a-brac contributes to morphological diversity. Dev. 129, 695–704.

    CAS  Google Scholar 

  • Dong P. D. Chu J. and Panganiban G. 2000 Coexpression of the homeobox genes Distal-less and homothorax determines Drosophila antennal identity. Development 127, 209–216.

    PubMed  CAS  Google Scholar 

  • Dong P. D., Chu J. and Panganiban G. 2001 Proximodistal domain specification and interactions in developing Drosophila appendages. Development 128, 2365–2372.

    PubMed  CAS  Google Scholar 

  • Dong P. D., Dicks J. S. and Panganiban G. 2002 Distal-less and homothorax regulate multiple targets to pattern the Drosophila antenna. Development 129, 1967–1974.

    PubMed  CAS  Google Scholar 

  • Duncan D. M., Burgess E. A. and Duncan I. 1998 Control of distal antennal identity and tarsal development in Drosophila by spineless-aristapedia, a homolog of the mammalian dioxin receptor. Genes Dev. 12, 1290–1303.

    PubMed  CAS  Google Scholar 

  • Dworkin I. 2005 Evidence for canalization of Distal-less function in the leg of Drosophila melanogaster. Evol. Dev. 7, 89–100.

    Article  PubMed  Google Scholar 

  • Emerald B. S. and Cohen S. M. 2004 Spatial and temporal regulation of the homoeotic selector gene Antennapedia is required for the establishment of leg identity in Drosophila. Dev. Biol. 267, 462–472.

    Article  PubMed  CAS  Google Scholar 

  • Emerald B. S., Curtiss J., Mlodzik M. and Cohen S. M. 2003 Distal antenna and distal antenna related encode nuclear proteins containing pipsqueak motifs involved in antenna development in Drosophila. Development 130, 1171–1180.

    Article  PubMed  CAS  Google Scholar 

  • Fienberg S. E. 1980 The analysis of cross-classical categorical data. MIT Press. Mass

    Google Scholar 

  • Gibson G. and Gehring W. J. 1988 Head and thoracic transformations caused by ectopic expression of Antennapedia during drosophila development. Development 102, 657–675.

    Google Scholar 

  • Golic K. G. 1991 Site-specific recombination between homologous chromosomes in Drosophila. Science 252, 958–961.

    Article  PubMed  CAS  Google Scholar 

  • Held L. I. 1990 Sensitive periods for abnormal patterning on a leg segment in Drosophila melanogaster. Rouxs Arch. Dev. Biol. 199, 31–47.

    Article  Google Scholar 

  • Held L. I. 2002 Bristles induce bracts via the EGFR pathway on Drosophila legs. Mech. Dev. 117, 225–234.

    Article  PubMed  CAS  Google Scholar 

  • Herke S. W., Serio N. V. and Rogers B. T. 2005 Functional analyses of tiptop and antennapedia in the embryonic development of Oncopeltus fasciatus suggests an evolutionary pathway from ground state to insect legs. Development 132, 27–34.

    Article  PubMed  CAS  Google Scholar 

  • Hosmer D. W. and Lemeshow S. 1989 Applied logistic Regression Wiley. NY

    Google Scholar 

  • Inbal A., Halachmi N., Dibner C., Frank D. and Salzberg A. 2001 Genetic evidence for the transcriptional-activating function of Homothorax during adult fly development. Development 128, 3405–3413.

    PubMed  CAS  Google Scholar 

  • Jaw T. J., You L. R., Knoepfler P. S., Yao L. C., Pai C. Y., Tang C. Y. et al. 2000 Direct interaction of two homeoproteins, homothorax and extradenticle, is essential for EXD nuclear localization and function. Mech. Dev. 91, 279–291.

    Article  PubMed  CAS  Google Scholar 

  • Johnston L. A., Ostrow B. D., Jasoni C. and Blochlinger K. 1998 The homeobox gene cut interacts genetically with the homeotic genes proboscipedia and Antennapedia. Genetics 149, 131–142.

    PubMed  CAS  Google Scholar 

  • Kopp A. and True J. R. 2002 Evolution of male sexual characters in the Oriental Drosophila melanogaster species group. Evol. Dev. 4, 278–291.

    Article  PubMed  Google Scholar 

  • Kurant E., Pai C. Y., Sharf R., Halachmi N., Sun Y. H. and Salzberg A. 1998 Dorsotonals/homothorax, the Drosophila homologue of meis1, interacts with extradenticle in patterning of the embryonic PNS. Development 125, 1037–1048.

    PubMed  CAS  Google Scholar 

  • Larsen E., Lee T. and Glickman N. 1996 Antenna to leg transformation: dynamics of developmental competence. Dev. Genet. 19, 333–339.

    Article  PubMed  CAS  Google Scholar 

  • Pai C. Y., Kuo T. S., Jaw T. J., Kurant E., Chen C. T., Bessarab D. A., Salzberg A. and Sun Y. H. 1998 The Homothorax homeoprotein activates the nuclear localization of another homeoprotein, Extradenticle, and suppresses eye development in Drosophila. Genes Dev. 12, 435–446.

    PubMed  CAS  Google Scholar 

  • Panganiban G., Nagy L. and Carroll S. B. 1994 The role of the Distal-less gene in the development and evolution of insect limbs. Curr. Biol. 4, 671–675.

    Article  PubMed  CAS  Google Scholar 

  • Panganiban G., Irvine S. M., Lowe C., Roehl H., Corley L. S., Sherbon B. et al. 1997 The origin and evolution of animal appendages. Proc. Natl. Acad. Sci. USA 94, 5162–5166.

    Article  PubMed  CAS  Google Scholar 

  • Postlethwait J. and Schneiderman H. A. 1969 A clonal analysis of determination in Antennapedia, a homoeotic mutant of drosophila melanogaster. Proc. Natl. Acad. Sci. USA 64, 176–183.

    Article  PubMed  CAS  Google Scholar 

  • Postlethwait J. H. and Schneidermam H. A. 1971 Pattern formation and determination in the antenna of the homeotic mutant Antennapedia of Drosophila melanogaster. Dev. Biol. 25, 606–640.

    Article  PubMed  CAS  Google Scholar 

  • Rieckhof G. E., Casares F., Ryoo H. D., Abu-Shaar M. and Mann R. S. 1997 Nuclear translocation of extradenticle requires homothorax, which encodes an extradenticle-related homeodomain protein. Cell 91, 171–183.

    Article  PubMed  CAS  Google Scholar 

  • Roch F. and Akam M. 2000 Ultrabithorax and the control of cell morphology in Drosophila halteres. Development 127, 97–107.

    PubMed  CAS  Google Scholar 

  • Scanga S. Manoukian A. and Larsen E. 1995 Time-dependent and concentration-dependent response of the Drosophila antenna imaginal disc to Antennapedia. Dev. Biol. 169, 673–682.

    Article  PubMed  CAS  Google Scholar 

  • Sokal R. R. and Rohlf F. J. 1995 Biometry Freeman, New York.

  • Steinbach O. C., Wolffe A. P. and Rupp R. A. 1997 Somatic linker histones cause loss of mesodermal competence in Xenopus. Nature 389, 395–399.

    Article  PubMed  CAS  Google Scholar 

  • Steel R. G. D., Torrie J. H. and Dickey D. A 1997 Principles and procedures in statistics. A biometrical approach. McGraw-Hill. New York.

    Google Scholar 

  • Stokes M. E. Davis C. S. and Koch G. G. 2000 categorial data analysis using the SAS system. Wiley. New York.

    Google Scholar 

  • Suzanne M., Estella C., Calleja M. and Sanchez-Herrero E. 2003 The hernandez and fernandez genes of Drosophila specify eye and antenna. Dev. Biol. 260, 465–483.

    Article  PubMed  CAS  Google Scholar 

  • Wagner-Bernholz J. T., Wilson C., Gibson G., Schuh R. and Gehring W. J. 1991 Identification of target genes of the homeotic gene Antennapedia by enhancer detection. Genes Dev. 5, 2467–2480.

    Article  PubMed  CAS  Google Scholar 

  • Wakimoto B. T., Turner F. R. and Kaufman T. C. 1984 Defects in embryogenesis in mutants associated with the antennapedia gene complex of Drosophila melanogaster. Dev. Biol. 102, 147–172.

    Article  PubMed  CAS  Google Scholar 

  • Xu T. and Rubin G. M. 1993 Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237.

    PubMed  CAS  Google Scholar 

  • Yao L. C., Liaw G. J., Pai C. Y. and Sun Y. H. 1999 A common mechanism for antenna-to-leg transformation in Drosophila: suppression of homothorax transcription by four HOM-C genes. Dev. Biol. 211, 268–276.

    Article  PubMed  CAS  Google Scholar 

  • Zeng W., Andrew D. J., Mathies L. D., Horner M. A. and Scott M. P. 1993 Ectopic expression and function of the Antp and Scr homeotic genes: the N terminus of the homeodomain is critical to functional specificity. Development 118, 339–352.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Dworkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dworkin, I., Lee, W., Mccloskey, F. et al. Complex genetic interactions govern the temporal effects of Antennapedia on antenna-to-leg transformations in Drosophila melanogaster . J Genet 86, 111–123 (2007). https://doi.org/10.1007/s12041-007-0016-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-007-0016-9

Keywords

Navigation