Skip to main content

Advertisement

Log in

Mineral composite assessment of Kelkit River Basin in Turkey by means of remote sensing

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Utilizing remote sensing (RS) and geographic information systems (GIS) tools, mineral composite characteristics (ferrous minerals (FM), iron oxide (IO), and clay minerals (CM)) of the Kelkit River Basin (15913.07 km2) in Turkey were investigated and mapped. Mineral composite (MC) index maps were produced from three LANDSAT-ETM+ satellite images taken in 2000. Resulting MC index maps were summarized in nine classes by using ‘natural breaks’ classification method in GIS. Employing bi-variety correlation analysis, relationships among index maps were investigated. According to the results, FM and IO index maps showed positive correlation, while CM index map is negatively correlated with FM and IO index maps. Negative correlations between iron and clay variables suggested that the dominant clay minerals of the study area might be smectite, illite, kaolinite, and chlorite, which have little or no iron content. Using field data for which their geographic coordinates had been determined by global positioning system (GPS), developed MC maps were verified, and found dependable for environmental and ecological modeling studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akalan I 1977 Toprak Olusu, Yapısı ve Ozellikleri (Ankara, TR: Ankara Universitesi, Ziraat Fakultesi Yayinları 662/204) pp. 342.

    Google Scholar 

  • Akhavi M S, Webster T L and Raymond D A 2001 RADARSAT-1 imagery and GIS modeling for mineral exploration in Nova Scotia, Canada; Geocarto International 16 55–61.

    Article  Google Scholar 

  • Akman Y and Daget Ph 1971 Quelques aspects synoptiques des climats de la Turquie; Extrait du Bulletin de la Société Languedocienne de Géographie 5/3 269–300.

    Google Scholar 

  • Akman Y 1999 Iklim ve Biyoiklim, Biyoiklim Metodlari ve Turkiye Iklimleri (Ankara, Palme Press) pp. 350.

    Google Scholar 

  • Atalay I 2006 Toprak Olusumu, Siniflandirilması ve Cografyasi, 3. Baski (Ankara, TR: T.C. Cevre ve Orman Bakanligi, Agaclandirma ve Erozyon Kontrolu Genel Mudurlugu) pp. 584.

    Google Scholar 

  • Bolt G H and Bruggenwert M G M 1976 Composition of the soil; In: Soil Chemistry A. Basic Elements (eds) Bolt G H and Bruggenwert M G M (Amsterdam, NL: Elsevier) pp. 1–3.

    Chapter  Google Scholar 

  • Borchardt G A 1977 Montmorillonite and other smectite minerals; In: Minerals in Soil Environment (eds) Dixon J B and Weed S B (Soil Science Society of America) pp. 293–330.

  • Brown J C 1956 Iron chlorosis; Annual Review of Plant Physiology 7 171–189.

    Article  Google Scholar 

  • Campbell J B 1996 Introduction to Remote Sensing, 2nd edn. (New York-London: The Guilford Press) pp. 468.

    Google Scholar 

  • CDC 1998 Recommendations to prevent and control iron deficiency in the United States (Morbidity and Mortality Weekly Report (MMWR), US Department of Health and Human Services, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia).

    Google Scholar 

  • Durak A, Topbaş M T and Kilic K 2003 Mineraloji ve Petrografi (Tokat, TR: Gaziosmanpasa Universitesi, Ziraat Fakultesi 9/6) pp. 149.

    Google Scholar 

  • Ellis R J and Scott P W 2004 Evaluation of hyperspectral remote sensing as a means of environmental monitoring in the St. Austell China clay (kaolin) region, Cornwall, UK; Remote Sensing of Environment 93 118–130.

    Article  Google Scholar 

  • ERDAS 2003 Erdas Field Guide, 7th edn. (Atlanta Georgia: Leica Geosystems, GIS and Mapping LLC) pp. 672.

    Google Scholar 

  • ESRI 2004 ArcGIS 9, Geoprocessing in ArcGIS (Redlands, California: Environmental Systems Research Institute) pp. 363.

    Google Scholar 

  • ESRI 2005 ArcGIS 9, What is in ArcGIS 9.1. (Environmental Systems Research Institute, Redlands, California, USA) pp. 123.

    Google Scholar 

  • Farrand W H 1997 Identification and mapping of ferric oxide and oxyhydroxide minerals in imaging spectrometer data of Summitville, Colorado, USA, and the surrounding San Juan Mountains; Int. J. Remote Sensing 10 1543–1552.

    Article  Google Scholar 

  • Grim R E 1962 Applied Clay Mineralogy (New York, Toronto, London: McGraw-Hill) pp. 422.

    Google Scholar 

  • Gris E 1844 Nouvelles experiences sur l’action des composes ferrugineux solubles, appliques a la vegetation, et specialement au traitement de la chlorose et de la debilite des plantes; Comptes Rendus de l Academie des Sciences (Paris) 19 1118–1119.

    Google Scholar 

  • Haktanır K and Arcak S 1997 Toprak Biyolojisi, Toprak Ekosistemine Giris (Ankara, Turkey: Ankara Üniversitesi, Ziraat Fakültesi Yayınları, No: 1486/1447) pp. 409.

    Google Scholar 

  • Jensen J R 1996 Introductory Digital Image Processing: A Remote Sensing Perspective, 2nd edn. (Englewood Cliffs, New Jersey: Prentice-Hall) pp. 316.

    Google Scholar 

  • KHGM 2002 National soil database of Turkey; General Directorate of Rural Services of the Ministry of Agriculture and Rural Affairs in Turkey, Ankara. Available at online: http://www.khgm.gov.tr (accessed on 10 June 2006).

    Google Scholar 

  • Kılıç M 1987 Tokat yoresindeki kirmizimsi topraklarin mikromorfogenesisi ve siniflandirilmasi; Cumhuriyet Universitesi, Tokat Ziraat Fakultesi Yayinlari, Bilimsel Arastırma ve Incelemeler 5/2 1–37.

    Google Scholar 

  • Landsat.org. 2006 Global observatory for ecosystem services; Michigan State University, USA. Available at online: http://www.landsat.org/ortho/index.htm (accessed on 8 July 2006).

    Google Scholar 

  • Longhi I, Sgavetti M, Chiari R and Mazzoli C 2001 Spectral analysis and classification of metamorphic rocks from laboratory reflectance spectra in the 0.4–2.5 µm interval: A tool for hyperspectral data integration; Int. J. Remote Sensing 22 3763–3782.

    Article  Google Scholar 

  • Microsoft 2003 Microsoft Office Excel. Microsoft Office Professional Edition (USA: Microsoft Corporation).

    Google Scholar 

  • Moore D M and Reynolds R C Jr. 1997 X-Ray Diffraction and the Identification and Analysis of Clay Minerals (New York: Oxford University Press) pp. 378.

    Google Scholar 

  • Murray H 2006 Applied Clay Mineralogy, Occurences, Processing and Application of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays (The Netherlands, Amsterdam: Elsevier Science) pp. 188.

    Google Scholar 

  • Neville R A, Lévesque J, Staenz K, Nadeau C, Hauff P and Borstad G A 2003 Spectral unmixing of hyperspectral imagery for mineral exploration: Comparison of results from SFSI and AVIRIS; Canadian J. Remote Sensing 29 99–110.

    Google Scholar 

  • Pyroclay 2007 Amorphous silica clay; Heart Balance Herbal Rejuvenation, Ashland Oregon. Available at online: http://www.pyroclay.com/clay.htm (accessed on 24 April 2007).

  • Sabins F F Jr 1987 Remote Sensing Principles and Interpretation, 2nd edn. (New York: W. H. Freeman & Co).

    Google Scholar 

  • Sabol D E Jr, Bell J F III and Adams J B 1993 Detectability of crystalline ferric and ferrous minerals on Mars; In: Lunar and Planetary Inst. Twenty-Fourth Lunar and Planetary Science Conference, Part 3, 1229–1230.

  • Somers I I and Shive J W 1942 The iron and manganese relations in plant metabolism; Plant Physiology 17 582–602.

    Article  Google Scholar 

  • Sposito G 1989 The Chemistry of Soils (New York and Oxford: Oxford University Press).

    Google Scholar 

  • SPSS 2001 SPSS 11.0 for Windows. SPSS Inc., Chicago.

    Google Scholar 

  • Tangestani M H and Moore F 2002 Porphyry copper alteration mapping at the Meiduk Area, Iran; Int. J. Remote Sensing 23 4815–4825.

    Article  Google Scholar 

  • Tucker C J 1979 Red and photographic infrared linear combinations for monitoring vegetation; Remote Sensing of Environment 8 127–150.

    Article  Google Scholar 

  • UNESCO 1973 International Classification and Mapping of Vegetation; Ecology and Conservation 6, UNESCO, Paris.

    Google Scholar 

  • USGS 2006 LANDSAT Project; Available at online: http://landsat7.usgs.gov/index.php (accessed on 18 October 2006).

  • Yalcin H and Gumuser G 2000 Mineralogical and geochemical characteristics of late Cretaceous bentonite deposits of the Kelkit Valley Region, northern Turkey; Clay Minerals 35 807–825.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Mete Dogan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dogan, H.M. Mineral composite assessment of Kelkit River Basin in Turkey by means of remote sensing. J Earth Syst Sci 118, 701–710 (2009). https://doi.org/10.1007/s12040-009-0059-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-009-0059-9

Keywords

Navigation