Skip to main content

Advertisement

Log in

Picric acid sensing and \(\hbox {CO}_{2}\) capture by a sterically encumbered azo-linked fluorescent triphenylbenzene based covalent organic polymer

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A sterically encumbered isopropyl group substituted fluorescent triphenylbenzene based azo-linked covalent organic polymer, \(^{i}\)PrTAPB-Azo-COP, has been synthesized by Cu(I) catalysed homo coupling (amine-amine) reaction of 1,3,5-tris(\(4'\)-amino-\(3',5'\)-isopropylphenyl)benzene (\(^{i}\)PrTAPB) under aerobic conditions. The Brunauer-Emmett-Teller (BET) and Langmuir surface areas of \(^{i}\)PrTAPB-Azo-COP have been estimated to be 395 and 697 \(\hbox {m}^{2}\) g\(^{-1}\) with a pore diameter of 11.6 Å. Due to the presence of fluorescent triphenylbenzene platform \(^{i}\)PrTAPB-Azo-COP exhibits broad emission band centred at 428 nm, when excited at 300 nm, as a result of extended conjugation. The inherent fluorescent nature of \(^{i}\)PrTAPB-Azo-COP has been utilized for sensing electron-deficient polynitroaromatic compounds (PNACs) such as a picric acid (PA), dinitrotoluene (DNT), p-dinitrobenzene (p-DNB) and m-dinitrobenzene (m-DNB). Further, \(^{i}\)PrTAPB-Azo-COP has also been utilized for capture of carbon dioxide as the azo-COP is enriched with \(\hbox {CO}_{2}\)-philic nitrogen atoms apart from its microporosity. Since the azo (–N=N-) linkages are masked by the bulky isopropyl groups, \(^{i}\)PrTAPB-Azo-COP exhibits a \(\hbox {CO}_{2}\) uptake of 6.5 and 19.4 wt% at 1 bar and 30 bar, respectively, at 273 K.

Graphical Abstract

SYNOPSIS Sterically encumbered azo-linked covalent organic polymer (\(^{i}\)PrTAPB-Azo-COP) has been synthesized from a fluorescent hexaisopropyl substituted triphenylbenzene platform. The resulting fluorescent porous COP has been utilized for picric acid sensing and \(\hbox {CO}_{2}\) capture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. (a) Nagarkar S S, Joarder B, Chaudhari A K, Mukherjee S and Ghosh S K 2013 Highly selective detection of nitro explosives by a luminescent metal–organic framework Angew. Chem. Int. Edit. 52 2881; (b) Madhu S, Bandela A and Ravikanth M 2014 Bodipy based fluorescent chemodosimeter for explosive picric acid in aqueous media and rapid detection in the solid state RSC Adv. 4 7120; (c) Dinda D, Gupta A, Shaw B K, Sadhu S and Saha S K 2014 Highly selective detection of trinitrophenol by luminescent functionalized reduced graphene oxide through fret mechanism ACS Appl. Mater. Interfaces 6 10722; (d) He G, Peng H, Liu T, Yang M, Zhang Y and Fang Y 2009 A novel picric acid film sensor via combination of the surface enrichment effect of chitosan films and the aggregation-induced emission effect of siloles J. Mater. Chem. 19 7347; (e) Roy B, Bar A K, Gole B and Mukherjee P S 2013 Fluorescent tris-imidazolium sensors for picric acid explosive J. Org. Chem. 78 1306; (f) Sang N, Zhan C and Cao D 2015 Highly sensitive and selective detection of 2, 4, 6-trinitrophenol using covalent-organic polymer luminescent probes J. Mater. Chem. A 3 92

  2. (a) Ashbrook P C 2001 Elements of a role model hazardous waste management program for academic institutions Chem. Health. Saf. 8 27; (b) Wollin K-M and Dieter H 2005 Toxicological guidelines for monocyclic nitro-, amino-and aminonitroaromatics, nitramines, and nitrate esters in drinking water Arch. Environ. Contam. Toxicol. 49 18

  3. (a) Håkansson K, Coorey R V, Zubarev R A, Talrose V L and Håkansson P 2000 Low-mass ions observed in plasma desorption mass spectrometry of high explosives J. Mass Spectrom. 35 337; (b) Joarder B, Desai A V, Samanta P, Mukherjee S and Ghosh S K 2015 Selective and sensitive aqueous-phase detection of 2, 4, 6-trinitrophenol (tnp) by an amine-functionalized metal–organic framework Chem. Eur. J. 21 965

  4. Sohn H, Calhoun R M, Sailor M J and Trogler W C 2001 Detection of TNT and picric acid on surfaces and in seawater by using photoluminescent polysiloles Angew. Chem. Int. Edit. 40 2104

    Article  CAS  Google Scholar 

  5. (a) Yang J-S and Swager T M 1998 Fluorescent porous polymer films as TNT chemosensors: Electronic and structural effects J. Am. Chem. Soc. 120 11864; (b) Shanmugaraju S, Jadhav H, Patil Y P and Mukherjee P S 2012 Self-assembly of an octanuclear platinum (II) tetragonal prism from a new pt\(^{II}_{4}\) organometallic star-shaped acceptor and its nitroaromatic sensing study Inorg. Chem. 51 13072

  6. (a) Senthamizhan A, Celebioglu A and Uyar T 2015 Ultrafast on-site selective visual detection of TNT at sub-ppt level using fluorescent gold cluster incorporated single nanofiber Chem. Commun. 51 5590; (b) Liu J, Yang S, Li F, Dong L, Liu J, Wang X and Pu Q 2015 Highly fluorescent polymeric nanoparticles based on melamine for facile detection of TNT in soil J. Mater. Chem. A 3 10069; (c) Lin L, Rong M, Lu S, Song X, Zhong Y, Yan J, Wang Y and Chen X 2015 A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2, 4, 6-trinitrophenol in aqueous solution Nanoscale 7 1872

  7. (a) Bell T W and Hext N M 2004 Supramolecular optical chemosensors for organic analytes Chem. Soc. Rev. 33 589; (b) Nambayah M and Quickenden T I 2004 A quantitative assessment of chemical techniques for detecting traces of explosives at counter-terrorist portals Talanta 63 461; (c) Eiceman G and Stone J 2004 Peer reviewed: Ion mobility spectrometers in national defense Anal. Chem. 76 390A; (d) Jiang Y, Zhao H, Zhu N, Lin Y, Yu P and Mao L 2008 A simple assay for direct colorimetric visualization of trinitrotoluene at picomolar levels using gold nanoparticles Angew. Chem. 120 8729; (e) Zhou H, Zhang Z, Jiang C, Guan G, Zhang K, Mei Q, Liu R and Wang S 2011 Trinitrotoluene explosive lights up ultrahigh raman scattering of nonresonant molecule on a top-closed silver nanotube array Anal. Chem. 83 6913; (f) Czarnik A W 1998 A sense for landmines Nature 394 417

  8. (a) Li J-S, Tang Y-J, Li S-L, Zhang S-R, Dai Z-H, Si L and Lan Y-Q 2015 Carbon nanodots functional MOFs composites by a stepwise synthetic approach: Enhanced \(\text{H}_{2}\) storage and fluorescent sensing CrystEngComm 17 1080; (b) Xie W, Zhang S-R, Du D-Y, Qin J-S, Bao S-J, Li J, Su Z-M, He W-W, Fu Q and Lan Y-Q 2015 Stable luminescent metal–organic frameworks as dual-functional materials to encapsulate Ln\(^{3+}\) ions for white-light emission and to detect nitroaromatic explosives Inorg. Chem. 54 3290; (c) Bandela A K, Bandaru S and Rao C P 2015 A fluorescent 1, 3-diaminonaphthalimide conjugate of calix [4] arene for sensitive and selective detection of trinitrophenol: Spectroscopy, microscopy, and computational studies, and its applicability using cellulose strips Chem. Eur. J. 21 13364; (d) Venkatramaiah N, Kumar S and Patil S 2012 Fluoranthene based fluorescent chemosensors for detection of explosive nitroaromatics Chem. Commun. 48 5007

  9. (a) Chopra R, Kaur P and Singh K 2015 Pyrene-based chemosensor detects picric acid upto attogram level through aggregation enhanced excimer emission Anal. Chim. Acta 864 55; (b) Udhayakumari D, Velmathi S, Venkatesan P and Wu S-P 2015 A pyrene-linked thiourea as a chemosensor for cations and simple fluorescent sensor for picric acid Anal. Methods 7 1161; (c) Gupta S K, Kaleeswaran D, Nandi S, Vaidhyanathan R and Murugavel R 2017 Bulky isopropyl group loaded tetraaryl pyrene based azo-linked covalent organic polymer for nitroaromatics sensing and \(\text{ CO }_{2}\) adsorption ACS Omega 2 3572

  10. Durga Prasad K, Venkataramaiah N and Guru Row T N 2014 1, 9-pyrazoloanthrone as a colorimetric and “turn-on” fluorometric chemosensor: Structural implications Cryst. Growth Des. 14 2118

    Article  CAS  Google Scholar 

  11. (a) Peng Y, Zhang A-J, Dong M and Wang Y-W 2011 A colorimetric and fluorescent chemosensor for the detection of an explosive—2, 4, 6-trinitrophenol (TNP) Chem. Commun. 47 4505; (b) Neena K K and Thilagar P 2016 Replacing the non-polarized C=C   bond with an isoelectronic polarized B–N unit for the design and development of smart materials J. Mater. Chem. C 4 11465

  12. Kartha K K, Sandeep A, Praveen V K and Ajayaghosh A 2015 Detection of nitroaromatic explosives with fluorescent molecular assemblies and \(\pi -\text{ gels }\) Chem. Rec. 15 252

    CAS  Google Scholar 

  13. (a) Shaw P E, Chen S S, Wang X, Burn P L and Meredith P 2013 High-generation dendrimers with excimer-like photoluminescence for the detection of explosives J. Phys. Chem. C 117 5328; (b) Shoaee S, Chen S S, Cavaye H, Smith A R, Burn P L, Gentle I R, Meredith P and Shaw P E 2017 Assessing the sensing limits of fluorescent dendrimer thin films for the detection of explosive vapors Sens. Actuators B-Chem. 239 727

  14. (a) Hong G, Sun J, Qian C, Xue P, Gong P, Zhang Z and Lu R 2015 Nanofibers generated from linear carbazole-based organogelators for the detection of explosives J. Mater. Chem. C 3 2371; (b) Xu Y, Wu X, Chen Y, Hang H, Tong H and Wang L 2016 Star-shaped triazatruxene derivatives for rapid fluorescence fiber-optic detection of nitroaromatic explosive vapors RSC Adv. 6 31915; (c) Kaleeswaran D, Vishnoi P, Kumar S, Chithiravel S, Walawalkar M G, Krishnamoorthy K and Murugavel R 2016 Alkyl-chain-separated triphenybenzene-carbazole conjugates and their derived polymers: Candidates for sensory, electrical and optical materials ChemistrySelect 1 6649; (d) Mei X, Wei K, Wen G, Liu Z, Lin Z, Zhou Z, Huang L, Yang E and Ling Q 2016 Carbazole-based diphenyl maleimides: Multi-functional smart fluorescent materials for data process and sensing for pressure, explosive and ph Dyes Pigments 133 345; (e) Prakash K and Nagarajan R 2013 Synthesis of solid state fluorescent quino [2, 3-b] carbazoles via copper (II) triflate-catalyzed heteroannulation: Application to detection of TNT Tetrahedron 69 8269

  15. Shanmugaraju S and Mukherjee P S 2015 \(\Pi \)-electron rich small molecule sensors for the recognition of nitroaromatics Chem. Commun. 51 16014

    CAS  Google Scholar 

  16. Xu S and Lu H 2015 Ratiometric fluorescence and mesoporous structure dual signal amplification for sensitive and selective detection of tnt based on MIP@QD fluorescence sensors Chem. Commun. 51 3200

    CAS  Google Scholar 

  17. (a) Zhou H, Ye Q, Neo W T, Song J, Yan H, Zong Y, Tang B Z, Hor T A and Xu J 2014 Electrospun aggregation-induced emission active poss-based porous copolymer films for detection of explosives Chem. Commun. 50 13785; (b) Ma X, Tao F, Zhang Y, Li T, Raymo F M and Cui Y 2017 Detection of nitroaromatic explosives by 3D hyperbranched \(\sigma -\pi \) conjugate polymer on the basis of the poss scaffold J. Mater. Chem. A 5 14343

  18. (a) Chowdhury A, Howlader P and Mukherjee P S 2016 Aggregation-induced emission of platinum (II) metallacycles and their ability to detect nitroaromatics Chem. Eur. J. 22 7468; (b) Sandhu S, Kumar R, Singh P and Kumar S 2016 Impact of aggregation on fluorescence sensitivity of molecular probes towards nitroaromatic compounds J. Mater. Chem. C 4 3209; (c) Zwijnenburg M A, Berardo E, Peveler W J and Jelfs K E 2016 Amine molecular cages as supramolecular fluorescent explosive sensors: A computational perspective J. Phys. Chem. B 120 5063

  19. (a) Hu Z, Deibert B J and Li J 2014 Luminescent metal–organic frameworks for chemical sensing and explosive detection Chem. Soc. Rev. 43 5815; (b) Nagarkar S S, Desai A V and Ghosh S K 2016 Engineering metal–organic frameworks for aqueous phase 2, 4, 6-trinitrophenol (TNP) sensing CrystEngComm 18 2994; (c) Yang Y, Shen K, Lin J-Z, Zhou Y, Liu Q-Y, Hang C, Abdelhamid H N, Zhang Z-Q and Chen H 2016 A Zn-MOF constructed from electron-rich \(\pi \)-conjugated ligands with an interpenetrated graphene-like net as an efficient nitroaromatic sensor RSC Adv. 6 45475; (d) Yadav A, Deshmukh M S and Boomishankar R 2017 Cationic and neutral copper (I) iodide cluster MOFs derived from tridentate N-donor functionalized P(V) ligands: Synthesis, structure and photophysical properties J. Chem. Sci. 129 1093; (e) Santra A, Francis M, Parshamoni S and Konar S 2017 Nanoporous Cu(I) metal–organic framework: Selective adsorption of benzene and luminescence sensing of nitroaromatics ChemistrySelect 2 3200; (f) Sanda S, Parshamoni S, Biswas S and Konar S 2015 Highly selective detection of palladium and picric acid by a luminescent MOF: A dual functional fluorescent sensor Chem. Commun. 51 6576; (g) Parshamoni S, Telangae J and Konar S 2015 Regulation of the pore size by shifting the coordination sites of ligands in two MOFs: Enhancement of \(\text{ CO }_{2}\) uptake and selective sensing of nitrobenzene Dalton Trans. 44 20926

  20. (a) Das G, Biswal B P, Kandambeth S, Venkatesh V, Kaur G, Addicoat M, Heine T, Verma S and Banerjee R 2015 Chemical sensing in two dimensional porous covalent organic nanosheets Chem. Sci. 6 3931; (b) Kaleeswaran D, Vishnoi P and Murugavel R 2015 [3+ 3] imine and \(\beta \)-ketoenamine tethered fluorescent covalent-organic frameworks for \(\text{ CO }_{2}\) uptake and nitroaromatic sensing J. Mater. Chem. C 3 7159; (c) Dalapati S, Jin S, Gao J, Xu Y, Nagai A and Jiang D 2013 An azine-linked covalent organic framework J. Am. Chem. Soc. 135 17310

  21. McCluskey A, Holdsworth C I and Bowyer M C 2007 Molecularly imprinted polymers (MIPs): Sensing, an explosive new opportunity? Org. Bio. Chem. 5 3233

    Article  CAS  Google Scholar 

  22. (a) Guo L and Cao D 2015 Color tunable porous organic polymer luminescent probes for selective sensing of metal ions and nitroaromatic explosives J. Mater. Chem. C 3 8490; (b) Bhunia A, Esquivel D, Dey S, Fernández-Terán R, Goto Y, Inagaki S, Van Der Voort P and Janiak C 2016 A photoluminescent covalent triazine framework: \(\text{ CO }_{2}\) adsorption, light-driven hydrogen evolution and sensing of nitroaromatics J. Mater. Chem. A 4 13450; (c) Deshmukh A, Bandyopadhyay S, James A and Patra A 2016 Trace level detection of nitroanilines using a solution processable fluorescent porous organic polymer J. Mater. Chem. C 4 4427; (d) Sun X, Wang Y and Lei Y 2015 Fluorescence based explosive detection: From mechanisms to sensory materials Chem. Soc. Rev. 44 8019

  23. (a) Thomas S W, Joly G D and Swager T M 2007 Chemical sensors based on amplifying fluorescent conjugated polymers Chem. Rev. 107 1339; (b) Yang J-S and Swager T M 1998 Porous shape persistent fluorescent polymer films: An approach to tnt sensory materials J. Am. Chem. Soc. 120 5321

  24. (a) Gomes R, Bhanja P and Bhaumik A 2015 A triazine-based covalent organic polymer for efficient \(\text{ CO }_{2}\) adsorption Chem. Commun. 51 10050; (b) Chakraborty S, Colón Y J, Snurr R Q and Nguyen S T 2015 Hierarchically porous organic polymers: Highly enhanced gas uptake and transport through templated synthesis Chem. Sci. 6 384; (c) Nandi S, Werner-Zwanziger U and Vaidhyanathan R 2015 A triazine–resorcinol based porous polymer with polar pores and exceptional surface hydrophobicity showing \(\text{ CO }_{2}\) uptake under humid conditions J. Mater. Chem. A 3 21116; (d) Nandi S, Rother J, Chakraborty D, Maity R, Werner-Zwanziger U and Vaidhyanathan R 2017 Exceptionally stable bakelite-type polymers for efficient pre-combustion\(\text{ CO }_{2}\) capture and H\(_{2}\) purification J. Mater. Chem. A 5 8431

  25. (a) Zhang Y and Riduan S N 2012 Functional porous organic polymers for heterogeneous catalysis Chem. Soc. Rev. 41 2083; (b) Seo M, Kim S, Oh J, Kim S-J and Hillmyer M A 2015 Hierarchically porous polymers from hyper-cross-linked block polymer precursors J. Am. Chem. Soc. 137 600; (c) Dogru M, Handloser M, Auras F, Kunz T, Medina D, Hartschuh A, Knochel P and Bein T 2013 A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene Angew. Chem. 125 2992; (d) Bildirir H, Gregoriou V G, Avgeropoulos A, Scherf U and Chochos C L 2017 Porous organic polymers as emerging new materials for organic photovoltaic applications: Current status and future challenges Mater. Horiz. 4 546; (e) Peng P, Zhou Z, Guo J and Xiang Z 2017 Well-defined 2d covalent organic polymers for energy electrocatalysis ACS Energy Lett. 2 1308; (f) Wu D, Xu F, Sun B, Fu R, He H and Matyjaszewski K 2012 Design and preparation of porous polymers Chem. Rev. 112 3959; (g) Xu Y, Jin S, Xu H, Nagai A and Jiang D 2013 Conjugated microporous polymers: Design, synthesis and application Chem. Soc. Rev. 42 8012; (h) Mukherjee G, Thote J, Aiyappa H B, Kandambeth S, Banerjee S, Vanka K and Banerjee R 2017 A porous porphyrin organic polymer (PPOP) for visible light triggered hydrogen production Chem. Commun. 53 4461; (i) Rao K V, Haldar R, Maji T K and George S J 2016 Dynamic, conjugated microporous polymers: Visible light harvesting via guest-responsive reversible swelling Phys. Chem. Chem. Phys. 18 156; (j) Suresh V M, Bandyopadhyay A, Roy S, Pati S K and Maji T K 2015 Highly luminescent microporous organic polymer with lewis acidic boron sites on the pore surface: Ratiometric sensing and capture of F- ions Chem. Eur. J. 21 10799

  26. (a) Haszeldine R S 2009 Carbon capture and storage: How green can black be? Science 325 1647; (b) Rochelle G T 2009 Amine scrubbing for \(\text{ CO }_{2}\) capture Science 325 1652

  27. (a) Patel H A, Je S H, Park J, Chen D P, Jung Y, Yavuz C T and Coskun A 2013 Unprecedented high-temperature \(\text{ CO }_{2}\) selectivity in N\(_{2}\)-phobic nanoporous covalent organic polymers Nat. Commun. 4 1357; (b) Arab P, Rabbani M G, Sekizkardes A K, İslamoğlu T and El-Kaderi H M 2014 Copper (I)-catalyzed synthesis of nanoporous azo-linked polymers: Impact of textural properties on gas storage and selective carbon dioxide capture Chem. Mater. 26 1385; (c) Ashourirad B, Sekizkardes A K, Altarawneh S and El-Kaderi H M 2015 Exceptional gas adsorption properties by nitrogen-doped porous carbons derived from benzimidazole-linked polymers Chem. Mater. 27 1349; (d) Rabbani M G and El-Kaderi H M 2012 Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake Chem. Mater. 24 1511; (e) Rabbani M G, Sekizkardes A K, Kahveci Z, Reich T E, Ding R and El-Kaderi H M 2013 A 2D mesoporous imine-linked covalent organic framework for high pressure gas storage applications Chem. Eur. J. 19 3324; (f) Sekizkardes A K, Altarawneh S, Kahveci Z, İslamoğlu T and El-Kaderi H M 2014 Highly selective \(\text{ CO }_{2}\) capture by triazine-based benzimidazole-linked polymers Macromolecules 47 8328; (g) Byun J, Je S-H, Patel H A, Coskun A and Yavuz C T 2014 Nanoporous covalent organic polymers incorporating Tröger’s base functionalities for enhanced CO\(_2\) capture J. Mater. Chem. A 2 12507

  28. Islamoglu T, Kim T, Kahveci Z, El-Kadri O M and El-Kaderi H M 2016 Systematic postsynthetic modification of nanoporous organic frameworks for enhanced \(\text{ CO }_{2}\) capture from flue gas and landfill gas J. Phys. Chem. C 120 2592

    Article  CAS  Google Scholar 

  29. (a) Nagendran S, Vishnoi P and Murugavel R 2017 Triphenylbenzene sensor for selective detection of picric acid J. Fluoresc. 27 1299; (b) Vishnoi P, Sen S, Patwari G N and Murugavel R 2015 Charge transfer aided selective sensing and capture of picric acid by triphenylbenzenes New J. Chem. 39 886; (c) Vishnoi P, Walawalkar M G and Murugavel R 2014 Containment of polynitroaromatic compounds in a hydrogen bonded triarylbenzene host Cryst. Growth Des. 14 5668; (d) Vishnoi P, Walawalkar M G, Sen S, Datta A, Patwari G N and Murugavel R 2014 Selective fluorescence sensing of polynitroaromatic explosives using triaminophenylbenzene scaffolds Phys. Chem. Chem. Phys. 16 10651

  30. Kaleeswaran D, Antony R, Sharma A, Malani A and Murugavel R 2017 Catalysis and \(\text{ CO }_{2}\) capture by palladium incorporated covalent organic frameworks ChemPlusChem 82 1253

  31. Armarego W L and Chai C L L 2009 Purification of laboratory chemicals (Oxford: Butterworth-Heinemann) p. 88

  32. (a) Patel H A, Je S H, Park J, Jung Y, Coskun A and Yavuz C T 2014 Directing the structural features of N\(_{2}\)-phobic nanoporous covalent organic polymers for \(\text{ CO }_{2}\) capture and separation Chem. Eur. J. 20 772; (b) Yang Z, Zhang H, Yu B, Zhao Y, Ma Z, Ji G, Han B and Liu Z 2015 Azo-functionalized microporous organic polymers: Synthesis and applications in \(\text{ CO }_{2}\) capture and conversion Chem. Commun. 51 11576; (c) Lu J and Zhang J 2014 Facile synthesis of azo-linked porous organic frameworks via reductive homocoupling for selective \(\text{ CO }_{2}\) capture J. Mater. Chem. A 2 13831

  33. Arab P, Parrish E, İslamoğlu T and El-Kaderi H M 2015 Synthesis and evaluation of porous azo-linked polymers for carbon dioxide capture and separation J. Mater. Chem. A 3 20586

    Article  CAS  Google Scholar 

  34. (a) Mostakim S and Biswas S 2016 A thiadiazole-functionalized Zr(IV)-based metal–organic framework as a highly fluorescent probe for the selective detection of picric acid CrystEngComm 18 3104; (b) Chahal M K and Sankar M 2015 1, 8-naphthyridine-based fluorescent receptors for picric acid detection in aqueous media Anal. Methods 7 10272; (c) Mukherjee S, Desai A V, Manna B, Inamdar A I and Ghosh S K 2015 Exploitation of guest accessible aliphatic amine functionality of a metal–organic framework for selective detection of 2, 4, 6-trinitrophenol (TNP) in water Cryst. Growth Des. 15 4627; (d) Mutneja R, Singh R, Kaur V, Wagler J, Kroke E and Kansal S K 2017 Proton transfer assisted facile encapsulation of picric acid in sol-gel derived silica decorated with azo-azomethine hosts Dyes Pigments 139 635

  35. Zhang Y, Zhu Y, Guo J, Gu S, Wang Y, Fu Y, Chen D, Lin Y, Yu G and Pan C 2016 The role of the internal molecular free volume in defining organic porous copolymer properties: Tunable porosity and highly selective \(\text{ CO }_{2}\) adsorption Phys. Chem. Chem. Phys. 18 11323

    Article  CAS  Google Scholar 

  36. Tao L, Niu F, Zhang D, Liu J, Wang T and Wang Q 2015 Azo-bridged covalent porphyrinic polymers (Azo-CPPs): Synthesis and \(\text{ CO }_{2}\) capture properties RSC Adv. 5 96871

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by SERB, New Delhi (SB/S1/IC-48/2013) and IIT-Bombay Bridge Funding. R. M. thanks, SERB, New Delhi for J. C. Bose Fellowship (SB/S2/JCB-85/2014). D. K. thanks UGC, New Delhi, for a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramaswamy Murugavel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 483 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaleeswaran, D., Murugavel, R. Picric acid sensing and \(\hbox {CO}_{2}\) capture by a sterically encumbered azo-linked fluorescent triphenylbenzene based covalent organic polymer. J Chem Sci 130, 1 (2018). https://doi.org/10.1007/s12039-017-1403-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-017-1403-2

Keywords

Navigation