Skip to main content
Log in

Three 2 D copper(II)/cadmium(II) coordination polymers based on semi-rigid/flexible bis-pyridyl-bis-amide ligands and 5-aminoisophthalate: Syntheses, structures and properties

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Three new transition metal coordination polymers [Cu(3-bpcb)0.5(5-AIP)] ⋅2H2O (1), [Cd(3-bpc b)0.5(5-AIP)(H2O)] ⋅H 2O (2) and [Cd(3-bpsa)0.5(5-AIP)(H2O)] ⋅2H2O (3) have been hydrothermally synthesized by self-assembly of 5-aminoisophthalic acid (5-H2AIP), semi-rigid or flexible bis-pyridyl-bis-amide ligands [3-bpcb = N N -bis(3-pyridinecarboxamide)-1,4-benzene, 3-bpsa = N,N -bis(3-pyridyl)succinamide], and copper chloride or cadmium nitrate. X-ray diffraction analysis reveals that compounds 1 and 2 possess similar 2 D double-layered structures with (3,4)-connected (63)(65⋅8) topology, while compound 3 displays a 2 D layer with {62.10}{6} topology. The adjacent layers of 13 are finally extended into 3 D supramolecular frameworks by hydrogen bonding interactions. The bis-pyridyl-bis-amide ligands with different flexibilities play an important role in the construction of final topological structures for the title compounds. Further, the electrochemical behavior of the compound 1 and the fluorescent and photocatalytic properties of compounds 13 have been investigated.

Three new copper(II)/cadmium(II) coordination polymers have been hydrothermally synthesized by self-assembly of 5-H2AIP, semi-rigid or flexible bis-pyridyl-bis-amide ligands and copper chloride or cadmium nitrate. The electrochemical behavior, the fluorescent and photocatalytic properties of the compounds have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Han M L, Wang J G, Ma L F, Guo H and Wang L Y 2012 Cryst. Eng. Comm. 14 2691

    Article  CAS  Google Scholar 

  2. Pramanik S, Zheng C, Zhang X, Emge T J and Li J 2011 J. Am. Chem. Soc. 133 4153

    Article  CAS  Google Scholar 

  3. Chu W J, Yao H C, Fan Y T and Hou H W 2011 Dalton Trans. 40 2555

    Article  CAS  Google Scholar 

  4. Lucas J S, Pochodylo A L and LaDuca R L 2010 Cryst. Eng. Comm. 12 3310

    Article  CAS  Google Scholar 

  5. Ren C, Hou L, Liu B, Yang G P, Wang Y Y and Shi Q Z 2011 Dalton Trans. 40 793

    Article  CAS  Google Scholar 

  6. Su Z, Xu J, Fan J, Liu D J, Chu Q, Chen M S, Chen S S, Liu G X, Wang X F and Sun W Y 2009 Cryst. Growth Des. 9 2801

    Article  CAS  Google Scholar 

  7. Lama P, Aijaz A, Sañudo E C and Bharadwaj P K 2010 Cryst. Growth Des. 10 283

    Article  CAS  Google Scholar 

  8. Chang Z, Zhang A S, Hu T L and Bu X H 2009 Cryst. Growth Des. 9 4840

    Article  CAS  Google Scholar 

  9. Chen W X, Wu S T, Long L S, Huang R B and Zheng L S 2007 Cryst. Growth Des. 7 1171

    Article  CAS  Google Scholar 

  10. He K H, Li Y W, Chen Y Q, Song W C and Bu X H 2012 Cryst. Growth Des 12 2730

    Article  CAS  Google Scholar 

  11. Sposato L K, Nettleman J A and LaDuca R L 2010 Cryst. Eng. Comm. 12 2374

    Article  CAS  Google Scholar 

  12. Gandolfo C M and LaDuca R L 2011 Cryst. Growth Des. 11 1328

    Article  CAS  Google Scholar 

  13. Rajadurai C, Enkelmann V, Ikorskii V, Ovcharenko V I and Baumgarten M 2006 Inorg. Chem. 6 9664

    Article  Google Scholar 

  14. Wang X L, Lin H Y, Mu B, Tian A X and Liu G C 2010 Dalton Trans. 39 6187

    Article  CAS  Google Scholar 

  15. Wang X L, Mu B, Lin H Y and Liu G C 2011 J. Organomet. Chem. 696 2313

    Article  CAS  Google Scholar 

  16. Adarsh N N, Greìlard A, Dufourc E J and Dastidar P 2012 Cryst. Growth Des. 12 3369

    Article  CAS  Google Scholar 

  17. Sun G M, Huang H X, Tian X Z, Song Y M, Zhu Y, Yuan Z J, Xu W Y, Luo M B, Liu S J, Feng X F and Luo F 2012 Cryst. Eng. Comm. 14 6182

    Article  CAS  Google Scholar 

  18. C Wang Y, Wilseck Z M, Supkowski R M and LaDuca R L 2011 Cryst. Eng. Comm. 13 1391

    Article  Google Scholar 

  19. Gong Y, Li J, Qin J B, Wu T, Cao R and Li J H 2011 Cryst. Growth Des. 11 1662

    Article  CAS  Google Scholar 

  20. Cheng J J, Chang Y T, Wu C J, Hsu Y F, Lin C, Proserpio D and Chen J D 2012 Cryst. Eng. Comm. 14 537

    Article  CAS  Google Scholar 

  21. Hu H L, Hsu Y F, Wu C J, Yeh C W, Chen J D and Wang J C 2012 Polyhedron 33 280

    Article  CAS  Google Scholar 

  22. Wang X L, Sui F F, Lin H Y, Xu C, Liu G C, Zhang J W and Tian A X 2013 Cryst. Eng. Comm. 15 7274

    Article  CAS  Google Scholar 

  23. Wang X L, Luan J, Sui F F, Lin H Y, Liu G C and Xu C 2013 Cryst. Growth Des. 13 3561

    Article  CAS  Google Scholar 

  24. Wang X L, Luan J, Lin H Y, Lu Q L, Xu C and Liu G C 2013 Dalton Trans. 42 8375

    Article  CAS  Google Scholar 

  25. Wang X L, Mu B, Lin H Y, Yang S, Liu G C, Tian A X and Zhang J W 2012 Dalton Trans. 41 11074

    Article  CAS  Google Scholar 

  26. Sarkar M and Biradha K 2006 Cryst. Growth Des. 6 202

    Article  CAS  Google Scholar 

  27. Muthu S, Yip J H K and Vittal J J 2002 J. Chem. Soc., Dalton Trans. 4561

  28. Sheldrick G M 1997 SHELXS–97: Program for Crystal Structure Solution (Göttingen, Germany: Göttingen University)

  29. Sheldrick G M 1997 SHELXS–97: Program for Crystal Structure Refinement (Göttingen, Germany: Göttingen University)

  30. Chang X H, Qin J H, Han M L, Ma L F and Wang L Y 2014 Cryst. Eng. Comm. 16 870

    Article  CAS  Google Scholar 

  31. Luo L, Lv G C, Wang P, Liu Q, Chen K and Sun W Y 2013 Cryst. Eng. Comm. 15 9537

    Article  CAS  Google Scholar 

  32. Mitkina T V, Zakharchuk N F, Naumov D Y, Gerasko O A, Fenske D and Fedin V P 2008 Inorg. Chem. 47 6748

    Article  CAS  Google Scholar 

  33. Song X Z, Song S Y, Qin C, Su S Q, Zhao S N, Zhu M, Hao Z M and Zhang H J 2012 Cryst. Growth Des. 12 253

    Article  CAS  Google Scholar 

  34. Wang H N, Meng X, Qin C, Wang X L, Yang G S and Su Z M 2012 Dalton Trans. 41 1047

    Article  CAS  Google Scholar 

  35. Zeng M H, Zou H H, Hu S, Zhou Y L, Du M and Sun H L 2009 Cryst. Growth Des. 9 4239

    Article  CAS  Google Scholar 

  36. Lin H Y, Liu P, Zhang J W, Wang X L and Liu G C 2013 J. Coord. Chem. 66 612

    Article  CAS  Google Scholar 

  37. Wang X L, Mu B, Lin H Y, Yang S and Liu G C 2013 J. Mol. Struct. 1036 380

    Article  CAS  Google Scholar 

  38. Wang X L, Mu B, Lin H Y, Yang S, Liu G C, Tian A X and Zhang J W 2013 Sci. China Chem. 56 557

    Article  CAS  Google Scholar 

  39. Hazra S, Majumder S, Fleck M, Aliaga-Alcalde N and Mohanta S 2009 Polyhedron 28 3707

    Article  CAS  Google Scholar 

  40. Lin H Y, Liu P, Wang X L, Xu C and Liu G C 2013 Z. Naturforsch. 68b 138

    Google Scholar 

  41. Wang X L, Zhao H Y, Lin H Y, Liu G C, Fang J N and Chen B K 2008 Electroanalysis 20 1055

    Article  CAS  Google Scholar 

  42. Lin H Y, Wang X L, Hu H L, Chen B K and Liu G C 2009 Solid State Sci. 11 643

    Article  CAS  Google Scholar 

  43. Wang X L, Lin H Y, Mu B, Tian A X, Liu G C and Hu N H 2011 Cryst. Eng. Comm. 13 1990

    Article  CAS  Google Scholar 

  44. Chen S S, Zhao Y, Fan J, Okamura T, Bai Z S, Chen Z H and Sun W Y 2012 Cryst. Eng. Comm. 14 3564

    Article  CAS  Google Scholar 

  45. Xu C Y, Li L K, Wang Y P, Guo Q Q, Wang X J, Hou H W and Fan Y T 2011 Cryst. Growth Des. 11 4667

    Article  CAS  Google Scholar 

  46. Cui Y J, Yue Y F, Qian G D and Chen B L 2012 Chem. Rev. 112 1126

    Article  CAS  Google Scholar 

  47. Gong Y, Wu T, Lin J H and Wang B S 2012 Cryst. Eng. Comm. 14 5649

    Article  CAS  Google Scholar 

  48. Zhang L, Zhao J L, Lin Q P, Qin Y Y, Zhang J, Yin P X, Cheng J K and Yao Y G 2009 Inorg. Chem. 48 6517

    Article  CAS  Google Scholar 

  49. Liu B, Yu Z T, Yang J, Wu H, Liu Y Y and Ma J F 2011 Inorg. Chem. 50 8967

    Article  CAS  Google Scholar 

  50. Chen Y Q, Li G R, Qu Y K, Zhang Y H, He K H, Gao Q and Bu X H 2013 Cryst. Growth Des. 13 901

    Article  CAS  Google Scholar 

  51. Sun C Y, Wang X L, Qin C, Jin J L, Su Z M, Huang P and Shao K Z 2013 Chem. Eur. J. 11 3639

    Article  Google Scholar 

Download references

Acknowledgements

The supports of the National Natural Science Foundation of China (No. 21471021), New Century Excellent Talents in University (NCET-09-0853), and Program of Innovative Research Team in University of Liaoning Province (LT2012020) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XIULI WANG.

Additional information

Supplementary Information

Crystallographic data for the structures reported in the paper have been deposited in the Cambridge Crystallographic Data Center with CCDC reference numbers CCDC 949958 for 1, 949959 for 2 and 1024049 for 3. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. The tables of selected bond lengths and angles, the related hydrogen bonding geometries of compounds 13, as well as additional figures are available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 1.73 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LIN, H., LU, H., LE, M. et al. Three 2 D copper(II)/cadmium(II) coordination polymers based on semi-rigid/flexible bis-pyridyl-bis-amide ligands and 5-aminoisophthalate: Syntheses, structures and properties. J Chem Sci 127, 1275–1285 (2015). https://doi.org/10.1007/s12039-015-0882-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-0882-2

Keywords

Navigation