Skip to main content
Log in

Hydration dynamics of protein molecules in aqueous solution: Unity among diversity#

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Dielectric dispersion and NMRD experiments have revealed that a significant fraction of water molecules in the hydration shell of various proteins do not exhibit any slowing down of dynamics. This is usually attributed to the presence of the hydrophobic residues (HBR) on the surface, although HBRs alone cannot account for the large amplitude of the fast component. Solvation dynamics experiments and also computer simulation studies, on the other hand, repeatedly observed the presence of a non-negligible slow component. Here we show, by considering three well-known proteins (lysozyme, myoglobin and adelynate kinase), that the fast component arises partly from the response of those water molecules that are hydrogen bonded with the backbone oxygen (BBO) atoms. These are structurally and energetically less stable than those with the side chain oxygen (SCO) atoms. In addition, the electrostatic interaction energy distribution (EIED) of individual water molecules (hydrogen bonded to SCO) with side chain oxygen atoms shows a surprising two peak character with the lower energy peak almost coincident with the energy distribution of water hydrogen bonded to backbone oxygen atoms (BBO). This two peak contribution appears to be quite general as we find it for lysozyme, myoglobin and adenylate kinase (ADK). The sharp peak of EIED at small energy (at less than 2 k B T) for the BBO atoms, together with the first peak of EIED of SCO and the HBRs on the protein surface, explain why a large fraction (~ 80%) of water in the protein hydration layer remains almost as mobile as bulk water. Significant slowness arises only from the hydrogen bonds that populate the second peak of EIED at larger energy (at about 4 kBT). Thus, if we consider hydrogen bond interaction alone, only 15–20% of water molecules in the protein hydration layer can exhibit slow dynamics, resulting in an average relaxation time of about 5–10 ps. The latter estimate assumes a time constant of 20–100 ps for the slow component. Interestingly, relaxation of water molecules hydrogen bonded to back bone oxygen exhibit an initial component faster than the bulk, suggesting that hydrogen bonding of these water molecules remains frustrated. This explanation of the heterogeneous and non-exponential dynamics of water in the hydration layer is quantitatively consistent with all the available experimental results, and provides unification among diverse features.

This study reveals a bimodal electrostatic energy distribution of protein–water hydrogen bonds involving side chain oxygen and faster than bulk water hydrogen bond breaking dynamics of protein–water hydrogen bond involving backbone oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) Bagchi B 2005 Chem. Rev. 105 3197; (b) Nandi N, Bhattacharyya K and Bagchi B 2000 Chem. Rev. 100 2013

  2. Levy Y and Onuchic J N 2006 Annu. Rev. Biophys. Biomol. Struct. 35 389

    Article  CAS  Google Scholar 

  3. Raschke T M 2006 Curr. Opin. Struct. Biol. 16 152

    Article  CAS  Google Scholar 

  4. Ohmine I and Tanaka H 1993 Chem. Rev. 93 2545

    Article  CAS  Google Scholar 

  5. (a) Bhattacharyya K 2008 Chem. Commun. 2848; (b) Bhattacharyya K 2003 Acc. Chem. Res. 36 95; (c) Sahu K, Mondal S K, Ghosh S and Bhattacharyya K 2007 Bull. Chem. Soc. Jpn 80 1033

  6. Daniel R M, Finney J L and Stoneham M 2004 Philos. Trans. R. Soc. London, Ser. B 359 1143

    Article  Google Scholar 

  7. Timasheff S N 1993 Annu. Rev. Biophys. Biomol. Struct. 22 67

    Article  CAS  Google Scholar 

  8. Nandi N and Bagchi B 1997 J. Phys. Chem. B 101 10954

    Article  CAS  Google Scholar 

  9. Nandi N and Bagchi B 1998 J. Phys. Chem. A 102 8217

    Article  CAS  Google Scholar 

  10. Chakraborty S and Bandopadhyay S 2007 J. Phys. Chem. B 111 7626

    Article  CAS  Google Scholar 

  11. Chakraborty S, Bandopadhyay S and Bagchi B 2005 J. Am. Chem. Soc. 127 16660

    Article  Google Scholar 

  12. Pal S, Maiti P K and Bagchi B 2006 J. Chem. Phys. 125 234903

    Article  Google Scholar 

  13. Jordanides X J, Lang M J, Song X and Fleming G R 1999 J. Phys. Chem. B 103 7995

    Article  CAS  Google Scholar 

  14. Murarka R K and Head-Gordon T 2008 J. Phys. Chem. B 112 179

    Article  CAS  Google Scholar 

  15. Murarka R K and Head-Gordon T 2007 J. Chem. Phys. 126 215101

    Article  Google Scholar 

  16. Pizzitutti F, Marchi M, Sterpone F and Rossky P J 2007 J. Phys. Chem. B 111 7584

    Article  CAS  Google Scholar 

  17. Hassanali A A, Li T, Zhong D and Singer S J 2006 J. Phys. Chem. B 110 10497

    Article  CAS  Google Scholar 

  18. Li T, Hassanali A A, Kao Y-T, Zhong D and Singer S J 2007 J. Am. Chem. Soc. 129 3376

    Article  CAS  Google Scholar 

  19. Khoshtariya D E, Hansen E, Leecharoen R and Walker G C 2003 J. Mol. Liq. 105 13

    Article  CAS  Google Scholar 

  20. Yokomizo T, Higo J and Nakasako M 2005 Chem. Phys. Lett. 410 31

    Article  CAS  Google Scholar 

  21. Thibodeaul P H, Brautigam C A, Machius M and Thomas P J 2004 Nat. Struct. Mol. Biol. 12 10

    Article  Google Scholar 

  22. Honig B and Cohen F E 1996 Folding Design 1 R17

    Article  Google Scholar 

  23. Sen P, Mukherjee S, Halder A and Bhattacharyya K 2004 Chem. Phys. Lett. 385 357

    Article  CAS  Google Scholar 

  24. Pal S K, Peon J, Bagchi B and Zewail A H 2002 J. Phys. Chem. B 106 12376

    Article  CAS  Google Scholar 

  25. (a) Halle B 2004 Phil. Trans. R. Soc. Lond. B 359 1207; (b) Halle B and Davidovic M 2003 Proc. Natl. Acad. Sci. USA 100 12135

  26. Jana B, Pal S and Bagchi B 2008 J. Phys. Chem. B 112 9112

    Article  CAS  Google Scholar 

  27. van der Spoel B, Lindahl E, Hess B, van Buuren A R, Apol E, Meulenhoff P J, Tieleman D P, Sijbers A L T M, Feenstra K A, van Drunen R and Berendsen H J C 2004 Gromacs User Manual version 3.2, www.gromacs.org

  28. Berendsen H J C, Grigera J R and Straatsma T P 1987 J. Chem. Phys. 91 6269

    Article  CAS  Google Scholar 

  29. (a) Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089; (b) Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577

  30. Rey R, Møller K B and Hynes J T 2002 J. Phys. Chem. A 106 11993

    Article  CAS  Google Scholar 

  31. Schneider B, Cohen D and Berman H M 1992 Biopolymers 32 725

    Article  CAS  Google Scholar 

  32. Reddy C K, Das A and Jayram B 2001 J. Mol. Biol. 314 619

    Article  CAS  Google Scholar 

  33. Cheng Y-K and Rossky P J 1998 Nature 392 696

    Article  CAS  Google Scholar 

  34. Cheng Y-K and Rossky P J 1999 Biopolymers 5 742

    Article  Google Scholar 

  35. Laage D and Hynes J T 2006 Science 311 832

    Article  CAS  Google Scholar 

  36. Chandra A 2000 Phys. Rev. Lett. 85 768

    Article  CAS  Google Scholar 

  37. Stillinger F H 1975 Adv. Chem. Phys. 31 1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BIMAN BAGCHI.

Additional information

#Dedicated to Prof. N Sathyamurthy on his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

JANA, B., PAL, S. & BAGCHI, B. Hydration dynamics of protein molecules in aqueous solution: Unity among diversity# . J Chem Sci 124, 317–325 (2012). https://doi.org/10.1007/s12039-012-0231-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-012-0231-7

Keywords

Navigation