Skip to main content
Log in

Proximity effect on the general base catalysed hydrolysis of amide linkage: The role of cationic surfactant, CTABr

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract.

The bis phenoxide forms of (1,2)bis(2-hydroxybenzamido)ethane(I), (1,5)bis(2-hydroxybenzamido)3-azapentane(II), (1,3)bis(2-hydroxybenzamido)propane(III), and (1,8)bis(2-hydroxybenzamido)3,6-diazaoctane(IV) undergo facile hydrolysis of one of the amide groups (0.02 ≤ [OH − ]T (mol dm − 3) ≤ 0.5, 10% MeOH (v/v) + H2O medium) without exhibiting [OH − ] dependence. The reactivity trend follows I ~ II > > III ~ IV with low activation enthalpy {25.7 ± 2.8 ≤ ΔH (kJ mol − 1) ≤ 64.8 ± 7.0}. The high negative and comparable values of activation entropy {− 234 ± 8 ≤ ΔS (J K − 1 mol − 1) ≤ −127 ± 20} are consistent with closely similar, and ordered transition states which can be assembled by favourably oriented phenoxide groups. The solvent kinetic isotope effect for I, k H2O/k D2O + H2O ~1 (20 and 50 volume% D2O), indicates that proton transfer is not involved as a part of the rate controlling process. The observed slowing down of the rate of this reaction for I in the micellar pseudo phase of CTABr also supports the proposed mechanism. Under pre-micellar conditions, however, rate acceleration is observed, a consequence believed to be associated with the capping effect of the hydrophobic tail of the surfactant cation forming the reactive ion-pair, CTA + , (I-2H)2 −  exclusively in the aqueous pseudo phase.

The bis phenoxide species of (1,2)bis(2-hydroxybenzamido)ethane, (1,5)bis(2-hydroxybenzamido)3-azapentane,(1,3)bis(2-hydroxybenzamido)propane, and (1,8)bis(2-hydroxybenzamido)3,6-diazaoctane undergo intra molecular general base catalysed hydrolysis. Kinetic evidence indicates ion-pair catalysis in the presence of the cationic surfactant, CTABr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown R S, Bennet A J and Slebocka-Tilk H 1992 Acc. Chem. Res. 25 481

    Article  CAS  Google Scholar 

  2. Bowden K, Hiscocks S P and Reddy M K 1997 J. Chem. Soc. Perkin Trans. 2 1133

    Google Scholar 

  3. Sunatsuki Y, Nakamura M, Matsumoto N and Kai F 1997 Bull. Chem. Soc. Jpn. 70 1851

    Article  CAS  Google Scholar 

  4. Stassinopoulos A, Schulte G, Papaefthymiou G C and Caradonna J P 1991 J. Am. Chem. Soc. 113 8686

    Article  CAS  Google Scholar 

  5. Stassinopoulos A and Caradonna J P 1990 J. Am. Chem. Soc. 112 7071

    Article  CAS  Google Scholar 

  6. Nguyen C, Guarjardo R J and Mascharak P K 1996 Inorg. Chem. 35 6273

    Article  CAS  Google Scholar 

  7. Nayak S, Dash A C and Lahiri G K 2008 Transit. Met. Chem. 33 39 and references cited therein

    Article  CAS  Google Scholar 

  8. Ahmad R, Khan M N and Khan A A 1976 Ind. J. Chem. 14A 807

    Google Scholar 

  9. Dash A C and Mishra A N 1998 Ind. J. Chem. 37A 961

    CAS  Google Scholar 

  10. Nayak S and Dash A C 2003 Ind. J. Chem. 42A 2427

    CAS  Google Scholar 

  11. Dash A C and Rath R K 2004 Ind. J. Chem. 43A 310

    CAS  Google Scholar 

  12. Chandra S K and Chakravorty A 1992 Inorg. Chem. 31 760

    Article  CAS  Google Scholar 

  13. Frost A A and Pearson R G 1961 Kinetics and mechanism, 2nd edn (New York: Wiley) p 49

    Google Scholar 

  14. Nayak S, Dash A C, Nayak P K and Das D 2005 Transit. Met. Chem. 30 917

    Article  CAS  Google Scholar 

  15. Nayak S and Dash A C 2006 Transit. Met. Chem. 31 813

    Article  CAS  Google Scholar 

  16. Slebocka-Tilk H, Bennet A J, Keillor J W, Brown R S, Guthrie J P and Jodhan A J 1990 J. Am. Chem. Soc. 112 8507; (b) Slebocka-Tilk H., Bennet A J, Hogg A J and Brown R S 1991 J. Am. Chem. Soc. 113 1288

    Google Scholar 

  17. Galabov B, Cheshmedzhieva D, Ilieva S and Hadjieva B 2004 J. Phys. Chem. A108 1147

    Google Scholar 

  18. Khan N and Azri H R 2010 J. Phys. Chem. B 114 8089

    Google Scholar 

  19. Al-Lohedan H, Bunton C A and Mhala M M 1982 J. Am. Chem. Soc. 104 6654; (b) Dash A C, Dash B ad Panda D 1985 J. Org. Chem. 50 2905

    Google Scholar 

  20. For Y = \((k_{\rm W}^{\prime} -k_{\rm obs})^{-1}\), \(\sigma (Y) = \sigma (k_{\rm obs}) \times (k_{\rm W}^{\prime} -k_{\rm obs})^{-2}\), and w(Y) = [σ(Y)] − 2

  21. Menger F M, Yoshinaga H, Venkatasubban K S and Das A R 1981 J. Org. Chem. 46 415

    Article  CAS  Google Scholar 

  22. Fuoss R 1958 J. Am. Chem. Soc. 80 5059; Eigen M 1954 Z. Physik. Chem. (Frankfurt) 1 176

  23. Dash A C and Patnaik A K 1995 J. Chem. Res. (S) 230 (M) 1529

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ANADI C DASH.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOC 467 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

DASH, S.C., DASH, A.C. Proximity effect on the general base catalysed hydrolysis of amide linkage: The role of cationic surfactant, CTABr. J Chem Sci 123, 497–507 (2011). https://doi.org/10.1007/s12039-011-0084-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-011-0084-5

Keywords.

Navigation