Skip to main content
Log in

Generalized Warburg impedance on realistic self-affine fractals: Comparative study of statistically corrugated and isotropic roughness

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 01 March 2010

Abstract

We analyse the problem of impedance for a diffusion controlled charge transfer process across an irregular interface. These interfacial irregularities are characterized as two class of random fractals: (i) a statistically isotropic self-affine fractals and (ii) a statistically corrugated self-affine fractals. The information about the realistic fractal surface roughness has been introduced through the band-limited power-law power spectrum over limited wave numbers. The details of power spectrum of such roughness can be characterized in term of four fractal morphological parameters, viz. fractal dimension (D H ), lower (ℓ), and upper (L) cut-off length scales of fractality, and the proportionality factor (μ) of power spectrum. Theoretical results are analysed for the impedance of such rough electrode as well as the effect of statistical symmetries of roughness. Impedance response for irregular interface is simplified through expansion over intermediate frequencies. This intermediate frequency expansion with sufficient number of terms offers a good approximation over all frequency regimes. The Nyquist plots of impedance show the strong dependency mainly on three surface morphological parameters i.e. D H , ℓ and μ. We can say that our theoretical results also provide an alternative explanation for the exponent in intermediate frequency power-law form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cottis S, Turgoose S and Newman R 2000 Corrosion testing made easy: Impedance and noise analysis (NACE international, Houston, Tex)

    Google Scholar 

  2. Yang L and Li Y 2005 Biosens. and Bioelectron. 20 1407

    Article  CAS  Google Scholar 

  3. Quanchao Z, Zuofeng C, Quanfeng D, Yanxia J, Ling H and Shigang S 2006 Chin. Sci. Bull. 51 1055

    Article  Google Scholar 

  4. Urbain M, Rael S and Davat B 2007 Energetical modeling of lithium-ion batteries (Industry Application Conference, 42nd IAS Annual Meeting, IEEE)

  5. Pfuch A, Heft A, Weidl R and Lang K 2006 Surf. Coat. Technol. 201 189

    Article  CAS  Google Scholar 

  6. Sarac A S, Sezgin S, Ates M and Turhan C M 2008 Surf. Coat. Technol. 202 3997

    Article  CAS  Google Scholar 

  7. Bevilaqua D, Acciari H A, Arena F A, Benedetti A V, Fugivara C S, Filho G T and Junior O G 2008 Miner. Eng.; doi:10.1016/j.mineng.2008.07.010

  8. Yoon K H, Jang J H and Cho Y S 1998 J. Mater. Sci. Lett. 17 1755

    Article  CAS  Google Scholar 

  9. Yaropolov A, Shleev S, Zaitseva E, Emnéus J, Marko-Varga G and Gorton L 2007 Bioelectrochemistry 70 199

    Article  CAS  Google Scholar 

  10. Bard A J and Faulkner L R 1980 Electrochemical methods: Fundamentals and application (New York: Wiley)

    Google Scholar 

  11. Lasia A 1999 Modern aspects of electrochemistry (eds) B E Conway, J O’ M Bockris and R E White (New York: Kluwer Acad; Plenum) No. 32

    Google Scholar 

  12. Macdonald D D 2006 Electrochim. Acta 51 1376

    Article  CAS  Google Scholar 

  13. De Gennes P G 1982 C.R. Acad. Sci. (Paris) Ser. II 295 1061

    Google Scholar 

  14. Kopelman R 1986 J. Stat. Phys. 42 185; 1988 Science 241 1620

    Article  Google Scholar 

  15. Chaudhari A, Yan C-C S and Lee S-L 2002 Chem. Phys. Lett. 351 341

    Article  CAS  Google Scholar 

  16. Dewey T G 1994 Proc. Natl. Acad. Sci USA 91 12101

    Article  CAS  Google Scholar 

  17. Vandembroucq D, Boccaro A C and Roux S 1995 Europhys. Lett. 30 209

    Article  CAS  Google Scholar 

  18. Sapoval B 1996 Fractal electrodes, fractal membranes and fractal catalyst in fractals and disordered systems (eds) A Bunde and S Havlin (Heidelberg: Springer-Verlag)

    Google Scholar 

  19. Gutfraind R and Sapoval B 1993 J. Phys. I France 3 1801

    Article  CAS  Google Scholar 

  20. Nyikos L and Pajkossy T 1986 Electrochim. Acta 31 1347

    Article  CAS  Google Scholar 

  21. Pajkossy T and Nyikos L 1989 Electrochim. Acta 34 171

    Article  CAS  Google Scholar 

  22. Nyikos L and Pajkossy T 1990 Electrochim. Acta 35 1567

    Article  CAS  Google Scholar 

  23. Pajkossy T 1991 J. Electroanal. Chem. 300 1

    Article  CAS  Google Scholar 

  24. De Levie R 1990 J. Electroanal. Chem. 281 1

    Article  Google Scholar 

  25. Ramesh P and Sampath S 2003 Anal. Chem. 75 6949

    Article  CAS  Google Scholar 

  26. Kant R and Rangarajan S K 2003 J. Electroanal. Chem. 552 141

    Article  CAS  Google Scholar 

  27. Kant R 1997 J. Phys. Chem. B101 3781

    Google Scholar 

  28. Kant R and Jha S K 2007 J. Phys. Chem. C111 14040

    Google Scholar 

  29. Jha S K, Sangal A and Kant R 2008 J. Electroanal. Chem. 615 180

    Article  CAS  Google Scholar 

  30. Go J-Y and Pyun S-I 2005 Electrochim. Acta 50 3479

    Article  CAS  Google Scholar 

  31. Ocon P, Herrasti P, Vazquez L, Salvarezza R C, Vara J M and Arvia A J 1991 J. Electroanal. Chem. 319 101

    Article  CAS  Google Scholar 

  32. Go J-Y and Pyun S-I 2007 J. Solid State Electrochem. 11 323

    Article  CAS  Google Scholar 

  33. Pajkossy T, Borosy A P, Imre A, Martemyanov S A, Schiller R and Nyikos L 1994 J. Electroanal. Chem. 366 69

    Article  CAS  Google Scholar 

  34. Kant R 1993 Phys. Rev. Lett. 70 4094

    Article  CAS  Google Scholar 

  35. Kant R and Rangarajan S K 1994 J. Electroanal. Chem. 368 1

    Article  CAS  Google Scholar 

  36. Kant R and Rangarajan S K 1995 J. Electroanal. Chem. 396 285

    Article  Google Scholar 

  37. Kant R and Jha S K Theory of partial diffusion-limited interfacial transfer/reaction on realistic fractals (Unpublished results)

  38. Dassas Y and Duby P 1995 J. Electrochem. Soc. 142 4175

    Article  CAS  Google Scholar 

  39. Imre A, Pajkossy T and Nyikos L 1992 Acta Metall. Mater. 40 1819

    Article  CAS  Google Scholar 

  40. Palasantzas G 2005 Surf. Sci. 582 151

    Article  CAS  Google Scholar 

  41. Rangarajan S K 1969 J. Electroanal. Chem. 22 89

    Article  CAS  Google Scholar 

  42. Bisquert J and Compte A J 2001 J. Electroanal. Chem. 499 112

    Article  CAS  Google Scholar 

  43. Ball R and Blunt M 1988 J. Phys. A: Math. Gen. 21 197

    Article  CAS  Google Scholar 

  44. Kant R, Kumar R and Yadav V K 2008 J. Phys. Chem. C112 4019

    Google Scholar 

  45. Warburg E 1899 Ann. Physik 67 493

    Google Scholar 

  46. Maritan A, Stella A L and Toigo F 1989 Phys. Rev. B40 9269

    Google Scholar 

  47. Yordanov O I and Atanasov I S 2002 Euro Phys. J. B29 211

    Google Scholar 

  48. Niklasson G A et al 2000 Thin Solid Films 359 203

    Article  CAS  Google Scholar 

  49. Abramowitz M and Stegan A (eds) 1972 Handbook of mathematical functions (New York: Dover Publications Inc)

    Google Scholar 

  50. Feder J 1988 Fractals (New York: Plenum)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama Kant.

Additional information

Dedicated to the memory of the late Professor S K Rangarajan

An erratum to this article is available at http://dx.doi.org/10.1007/s12039-010-0033-8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R., Kant, R. Generalized Warburg impedance on realistic self-affine fractals: Comparative study of statistically corrugated and isotropic roughness. J Chem Sci 121, 579–588 (2009). https://doi.org/10.1007/s12039-009-0070-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-009-0070-3

Keywords

Navigation