Skip to main content
Log in

On the origin of the anomalous ultraslow solvation dynamics in heterogeneous environments

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Many recent experimental studies have reported a surprising ultraslow component (even >10 ns) in the solvation dynamics of a polar probe in an organized assembly, the origin of which is not understood at present. Here we propose two molecular mechanisms in explanation. The first one involves the motion of the ‘buried water’ molecules (both translation and rotation), accompanied by cooperative relaxation (‘local melting’) of several surfactant chains. An estimate of the time is obtained by using an effective Rouse chain model of chain dynamics, coupled with a mean first passage time calculation. The second explanation invokes self-diffusion of the (di)polar probe itself from a less polar to a more polar region. This may also involve cooperative motion of the surfactant chains in the hydrophobic core, if the probe has a sizeable distribution inside the core prior to excitation, or escape of the probe to the bulk from the surface of the self-assembly. The second mechanism should result in the narrowing of the full width of the emission spectrum with time, which has indeed been observed in recent experiments. It is argued that both the mechanisms may give rise to an ultraslow time constant and may be applicable to different experimental situations. The effectiveness of solvation as a dynamical probe in such complex systems has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maroncelli M, McInnis J and Fleming G R 1989 Science 243 1674

    Article  CAS  Google Scholar 

  2. Maroncelli M 1993 J. Mol. Liq. 57 1

    Article  CAS  Google Scholar 

  3. Bagchi B 1989 Annu. Rev. Phys. Chem. 40 115

    Article  CAS  Google Scholar 

  4. Fecko C J, Eaves J D, Loparo J J, Tokmakoff A and Geissler P L 2003 Science 301 1698

    Article  CAS  Google Scholar 

  5. Jimenez R, Fleming G R, Kumar P V and Maroncelli M 1994 Nature (London) 369 471

    Article  CAS  Google Scholar 

  6. Nandi N, Roy S and Bagchi B 1995 J. Chem. Phys. 105 1390

    Article  Google Scholar 

  7. Jarzeba W, Walker G C, Johnson A E, Kahlow M A and Barbara P F 1988 J. Phys. Chem. 92 7039

    Article  CAS  Google Scholar 

  8. Bagchi B 2003 Annu. Rep. Prog. Chem. Sect. C99 127

    Article  Google Scholar 

  9. Nadi N, Bhattacharyya K and Bagchi B 2000 Chem. Rev. 100 2013

    Article  Google Scholar 

  10. Pal S K, Peon J, Bagchi B and Zewail A H 2002 J. Phys. Chem. B106 12376

    Google Scholar 

  11. Otting G, Liepinsh W and Wuthrich K 1991 Science 254 974

    Article  CAS  Google Scholar 

  12. Nandi N and Bagchi B 1997 J. Phys. Chem. B101 10954

    Google Scholar 

  13. Nandi N and Bagchi B 1998 J. Phys. Chem. A102 8217

    Google Scholar 

  14. Jordandies X J, Lang M J, Song X and Fleming G R 1999 J. Phys. Chem. B103 7995

    Google Scholar 

  15. Pal S K and Zewail A H 2004 Chem. Rev. 104 2099

    Article  CAS  Google Scholar 

  16. Mandal D, Sen S, Sukul D, Bhattacharyya K, Mandal A K, Banerjee R and Roy S 2002 J. Phys. Chem. B106 10741

    Google Scholar 

  17. Vajda S, Jimenez R, Rosenthal S J, Fidler V, Fleming G R and Castner E W Jr 1995 J. Chem. Soc. Faraday Trans. 91 867

    Article  CAS  Google Scholar 

  18. Nandi N and Bagchi B 1996 J. Phys. Chem. 100 13914

    Article  CAS  Google Scholar 

  19. Gearheart L A, Somoza M M, Rivers W E, Murphy C J, Coleman R S and Berg M A 2003 J. Am. Chem. Soc. 125 11812

    Article  CAS  Google Scholar 

  20. Brauns E B, Madaras M L, Coleman R S and Berg M A 2002 Phys. Rev. Lett. 88 158101-1-4

    Google Scholar 

  21. Frauchiger L, Shirota H, Uhrich K E and Castner E W Jr 2002 J. Phys. Chem. B106 7463

    Google Scholar 

  22. Hara K, Kuwabara H and Kajimoto O 2001 J. Phys. Chem. A105 7174

    Google Scholar 

  23. Mandal D, Sen S, Tahara T and Bhattacharyya K 2002 Chem. Phys. Lett. 359 77

    Article  CAS  Google Scholar 

  24. Balasubramanian S, Pal S and Bagchi B 2003 J. Phys. Chem. B107 5194

    Google Scholar 

  25. Balasubramanian S, Pal S and Bagchi B 2002 Phys. Rev. Lett. 89 115505-1-4

    Google Scholar 

  26. Sen P, Mukherjee S, Halder A and Bhattacharyya K 2004 Chem. Phys. Lett. 385 357

    Article  CAS  Google Scholar 

  27. Bruce C D, Senapati S, Berkowitz M L, Perera L and Forbes M D E 2002 J. Phys. Chem. B106 10902

    Google Scholar 

  28. Lundgren J S, Heitz M P and Bright F V 1995 Anal. Chem. 67 3775

    Article  CAS  Google Scholar 

  29. Corbeil E M, Riter R E and Levinger N E 2004 J. Phys. Chem. B108 10777

    Google Scholar 

  30. Faeder J and Ladanyi B M 2002 J. Phys. Chem. B104 1033

    Google Scholar 

  31. Dutta P, Sen P, Mukherjee S, Halder A and Bhattacharyya K 2003 J. Phys. Chem. B107 10815

    Google Scholar 

  32. Levitt M and Sharon R 1988 Proc. Natl. Acad. Sci. USA 85 7557

    Article  CAS  Google Scholar 

  33. Bellisent-Funel M-C 2000 J. Mol. Liq. 84 39

    Google Scholar 

  34. Pasenkiewicz-Gierula M, Takaoka V, Miyagawa, H, Kitamura K and Kusumi A 1997 J. Phys. Chem. A101 3677

    Google Scholar 

  35. Rog T, Murzyn K and Pasenkiewicz-Giurela M 2002 Chem. Phys. Lett. 352 323

    Article  CAS  Google Scholar 

  36. Konig S, Sackmann E, Richter D, Zorn R, Carlile C and Bayerl T M J 1994 Chem. Phys. 100 3307

    Article  Google Scholar 

  37. Tasaki K 1996 J. Am Chem. Soc. 118 8459

    Article  CAS  Google Scholar 

  38. Bandyopadhyay S, Tarek M, Lynch M L and Klein M L 2000 Langmuir 16 942

    Article  CAS  Google Scholar 

  39. Allen R, Bandyopadhyay S and Klein M L 2000 Langmuir 16 10547

    Article  CAS  Google Scholar 

  40. Bandyopadhyay S and Chanda J 2003 Langmuir 19 10443

    Article  CAS  Google Scholar 

  41. Berr S S, Caponetti E, Jones R R M, Johnson J S and Magid L J 1987 J. Phys. Chem. 91 5766

    Article  Google Scholar 

  42. Pal S K, Datta A, Mandal D and Bhattacharyya K 1998 Chem. Phys. Lett. 288 793

    Article  CAS  Google Scholar 

  43. Rick S W, Stuart S J and Berne B J 1994 J. Chem. Phys. 101 6141

    Article  CAS  Google Scholar 

  44. Chattopadhyay A and Mukherjee S 1999 J. Phys. Chem. B103 8180

    Google Scholar 

  45. Chattopadhyay A, Mukherjee S and Raghuraman H 2002 J. Phys. Chem. B106 13002

    Google Scholar 

  46. Demochenko A P and Ladokhin A S 1988 Eur. Biophys. J. 15 569

    Google Scholar 

  47. Satoh T, Okuno H, Tominaga K and Bhattacharyya K 2004 Chem. Lett. 33 1090

    Article  CAS  Google Scholar 

  48. Sen P, Satoh T, Tominaga K and Bhattacharyya K 2006 Chem. Asian J. 1 188

    Article  CAS  Google Scholar 

  49. Sykora J, Kapusta P, Fidler V and Hof M 2002 Langmuir 18 571

    Article  CAS  Google Scholar 

  50. Quitevis E L, Marcus A H and Fayer M D 1993 J. Phys. Chem. 97 5762

    Article  CAS  Google Scholar 

  51. Wittouck N W, Negri R M and De Schryver F C 1994 J. Am. Chem. Soc. 116 10601

    Article  CAS  Google Scholar 

  52. Sen S, Sukul D, Dutta P and Bhattacharyya K 1994 J. Phys. Chem. A105 7495

    Google Scholar 

  53. Grant E H, Sheppard R J and South G P 1978 Dielectric behavior of biological molecules (Oxford: Clarendon)

    Google Scholar 

  54. Huscha T, Peytcheva A and Kaatze U 2002 J. Phys.-Cond. Matter 14 9461

    Article  Google Scholar 

  55. Bardos-Nagy I, Galántai R, Laberge M and Fidy J 2003 Langmuir 19 146

    Article  CAS  Google Scholar 

  56. Wand A J, Ehrhardt M R and Flynn P F 1998 Proc. Natl. Acad. Sci. USA 95 15299

    Article  CAS  Google Scholar 

  57. Dutta P, Sen P, Mukherjee S and Bhattacharyya K 2003 Chem. Phys. Lett. 382 426

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kankan Bhattacharyya or Biman Bagchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharyya, K., Bagchi, B. On the origin of the anomalous ultraslow solvation dynamics in heterogeneous environments. J Chem Sci 119, 113–121 (2007). https://doi.org/10.1007/s12039-007-0018-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-007-0018-4

Keywords

Navigation