Skip to main content
Log in

Elucidation and genetic intervention of CO2 concentration mechanism in Chlamydomonas reinhardtii for increased plant primary productivity

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The rising global population is forcing the need for adapting alternative sustainable technologies for enhanced crop productivity. The CO2 Concentration Mechanisms (CCMs) evolved in algae to counter the inefficient CO2 fixing enzyme, RuBisCo and slower diffusion of CO2 in water offers good scope for the above purpose. The CCMs are single-celled CO2 supply mechanisms that depend on multiple CO2/HCO 3 transporters and acclimation states and accumulate 100-fold more CO2 than low CO2 environments. Although some insights have been obtained regarding the CCMs of blue-green algae and green algae like Chlamydomonas reinhardtii, further progress needs to take place to understand the molecular and biochemical basis for intracellular transport of CO2. In this review, complete information pertaining to the core CCM is presented and discussed in light of the available literature. In addition to this, information on CO2/HCO 3 sensing, photo-acclimation in low CO2, liquid-like nature of pyrenoid, untapped potential of high CO2 responses and high CO2 requiring mutants, and prospects of engineering CCM components into higher plants are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Aigner H, Wilson RH, Bracher A, Calisse L, Bhat JY, Hartl FU and Hayer-Hartl M 2017 Plant RuBisCo assembly in E. coli with five chloroplast chaperones including BSD2. Science 358 1272–1278

    CAS  PubMed  Google Scholar 

  • Atkinson N, Feike D, Mackinder LC, Meyer MT, Griffiths H, Jonikas MC, Smith AM and McCormick AJ 2015 Introducing an algal carbon concentrating mechanism into higher plants: location and incorporation of key components. Plant Biotechnol J. 14 1302–1315

  • Atkinson N, Leitao N, Orr DJ, Meyer MT, Carmo-Silva E, Griffiths H and McCormick AJ 2017 RuBisCo small subunits from the unicellular green alga Chlamydomonas complement RuBisCo-deficient mutants of Arabidopsis. New Phytol. 214 655–667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson N, Velanis CN, Wunder T, Clarke DJ, Mueller-Cajar O and McCormick AJ 2019 The pyrenoidal linker protein EPYC1 phase separates with hybrid Arabidopsis–ChlamydomonasRuBisCo through interactions with the algal RuBisCo small subunit. J. Exp. Bot70 5271–5285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baba M, Hanawa Y, Suzuki I and Shiraiwa Y 2011 Regulation of the expression of H43/Fea1 by multi-signals. Photosynth Res. 109 169–177

    CAS  PubMed  Google Scholar 

  • Beardall J and Stojkovic S 2006 Microalgae under global environmental change: implications for growth and productivity, populations and trophic flow. Sci. Asia 32 001

    Google Scholar 

  • Benlloch R, Shevela D, Hainzl T, Grundstrom C, Shutova T, Messinger J and Sauer Eriksson AE 2015 Crystal structure and functional characterization of photosystem II-associated carbonic anhydrase CAH3 in Chlamydomonas reinhardtii. Plant Physiol. 167 950–962

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berger H, Blifernez-Klassen O, Ballottari M, Bassi R, Wobbe L and Kruse O 2014 Integration of carbon assimilation modes with photosynthetic light capture in the green alga Chlamydomonas reinhardtii. Mol. Plant 7 1545–1559

    CAS  PubMed  Google Scholar 

  • Blanco-Rivero A, Shutova T, Roman MJ, Villarejo A and Martinez F 2012 Phosphorylation controls the localization and activation of the lumenal carbonic anhydrase in Chlamydomonas reinhardtii. PLoS one. 7 e49063

  • Borkhsenious ON, Mason CB and Moroney JV 1998 The intracellular localization of Ribulose‐1,5‐bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtiiPlant Physiol. 116 1585–1591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brueggeman AJ, Gangadharaiah DS, Cserhati MF, Casero D, Weeks DP and Ladunga I 2012 Activation of the carbon concentrating mechanism by CO2 deprivation coincides with massive transcriptional restructuring in Chlamydomonas reinhardtii. Plant Cell 24 1860–1875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caspari OD, Meyer MT, Tolleter D, Wittkopp TM, Cunniffe NJ, Lawson T and Griffiths H 2017 Pyrenoid loss in Chlamydomonas reinhardtii causes limitations in CO2 supply, but not thylakoid operating efficiency. J Exp Bot. 68 3903–3913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chisti Y 2008 Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 26 126–131

    CAS  PubMed  Google Scholar 

  • Choi HI, Kim JYH, Kwak HS, Sung YJ and Sim SJ 2016 Quantitative analysis of the chemotaxis of a green alga, Chlamydomonas reinhardtii, to bicarbonate using diffusion-based microfluidic device. Biomicrofluidics. 10 014121

    PubMed  PubMed Central  Google Scholar 

  • Duanmu D, Miller AR, Horken KM, Weeks DP and Spalding MH 2009 Knockdown of limiting-CO2–induced gene HLA3 decreases HCO3 transport and photosynthetic Ci affinity in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 106 5990–5995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Engel BD, Schaffer M, Kuhn Cuellar L, Villa E, Plitzko JM and Baumeister W 2015 Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. eLife 4 eo4889

  • Findinier J, Laurent S, Duchene T, Roussel X, Lancelon-Pin C, Cuine S and Dauvillée D 2019 Deletion of BSG1 in Chlamydomonas reinhardtii leads to abnormal starch granule size and morphology. Sci Rep. 9 1–3

    CAS  Google Scholar 

  • Freeman Rosenzweig ES, Xu B, Kuhn Cuellar L, Martinez-Sanchez A, Schaffer M, Strauss Mand Jonikas MC 2017 The eukaryotic CO2—concentrating organelle is liquid-like and exhibits dynamic reorganization. Cell 171 148–162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao H, Wang Y, Fei X, Wright DA and Spalding MH 2015Expression activation and functional analysis of HLA3, a putative inorganic carbon transporter in Chlamydomonas reinhardtii. Plant J. 82 1–11

  • Geraghty AM and Spalding MH 1996 Molecular and structural changes in Chlamydomonas under limiting CO2 (apossible mitochondrial role in adaptation). Plant Physiol. 111 1339–1347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gong HY, Li Y, Fang G, Hu DH, Jin WB, Wang ZH and Li YS 2015 Transgenic rice expressing Ictb and FBP/Sbpase derived from cyanobacteria exhibits enhanced photosynthesis and mesophyll conductance to CO2. PLoS One 10 e0140928

    PubMed  PubMed Central  Google Scholar 

  • Hallem EA, Spencer WC, McWhirter RD, Zeller G, Henz SR, Ratsch G and Ringstad N 2011 Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 108 254–259

    CAS  PubMed  Google Scholar 

  • Hanawa Y, Watanabe M, Karatsu Y, Fukuzawa H and Shiraiwa Y 2007 Induction of a high-CO2-inducible, periplasmic protein, H43, and its application as a high-CO2-responsive marker for study of the high-CO2-sensing mechanism in Chlamydomonas reinhardtii. Plant Cell Physiol. 48 299–309

    CAS  PubMed  Google Scholar 

  • Harada H, Nakajima K, Sakaue K and Matsuda Y 2006 CO2 sensing at ocean surface mediated by cAMP in a marine diatom. Plant Physiol. 142 1318–1328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hay WT, Bihmidine S, Mutlu N, Hoang KL, Awada T, Weeks DP and Long, SP 2017 Enhancing soybean photosynthetic CO2 assimilation using a cyanobacterial membrane protein, ictB. J. Plant Physiol. 212 58–68

    CAS  PubMed  Google Scholar 

  • Hennacy JH and Jonikas MC 2020 Prospects for engineering biophysical CO2 concentrating mechanisms into land plants to enhance yields. Annu. Rev. Plant Biol. 71 461–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, Boisson-Dernier A, Israelsson-Nordstrom M, Bohmer M, Xue S, Ries A and Schroeder JI 2009 Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nat. Cell Biol. 1287–93

  • Hwangbo K, Lim JM, Jeong SW, Vikramathithan J, Park YI and Jeong WJ 2018 Elevated inorganic carbon concentrating mechanism confers tolerance to high light in an arctic Chlorella sp. ArM0029B. Front. Plant Sci. 9 590

  • Itakura AK, Chan KX, Atkinson N, Pallesen L, Wang L, Reeves G and Jonikas MC 2019 A RuBisCo-binding protein is required for normal pyrenoid number and starch sheath morphology in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 116 18445–18454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin S, Sun J, WunderT, Tang D,Cousins AB, SzeSK, Mueller-Cajar Oand Gao YG 2016 Structural insights into the LCIB protein family reveals a new group of β-carbonic anhydrases. Proc. Natl. Acad. Sci. USA 113 14716–14721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson J, Clarke AK, Chen ZY, Hugghins SY, Park YI, Husic HD, Moroney JV, and Samuelsson G 1998 A novel alpha -type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2. EMBO J. 17 1208–1216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katano T, Lee J, Lee YJ, Kim MK, Lee CG, Jin ES and Han MS 2009. Effect of temperature on inorganic carbon acquisition of Chlamydomonas reinhardtii. J. Freshw. Ecol. 24 255260

    Google Scholar 

  • Kono A and Spalding MH 2020 LCI1, a Chlamydomonas reinhardtii plasma membrane protein, functions in active CO2 uptake under low CO2. Plant J. 102 1127–1141

    CAS  PubMed  Google Scholar 

  • Kono A, Chou TH, Radhakrishnan A, Jani Reddy B, Kannan S, Sayane S, Chih-Chia S, Robert L J, Carol VR, Edward WY and Spalding, MH 2020 Structure and function of LCI1: a plasma membrane CO2 channel in the Chlamydomonas CO2 concentrating mechanism. Plant J. 102 1107–1126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lam MK and Lee KT 2013 Effect of carbon source towards the growth of Chlorella vulgaris for CO2 bio-mitigation and biodiesel production. Intl. J. Greenh. Gas Con. 14 169–176

    CAS  Google Scholar 

  • Lieman-Hurwitz J, Rachmilevitch S, Mittler R, Marcus Y and Kaplan, A 2003 Enhanced photosynthesis and growth of transgenic plants that express ictB, a gene involved in HCO3 accumulation in cyanobacteria. Plant Biotechnol. J. 1 43–50

    CAS  PubMed  Google Scholar 

  • Lin MT, Occhialini A, Andralojc PJ, Parry MAJ and Hanson, MR 2014 A faster rubisco with potential to increase photosynthesis in crops. Nature 513 547–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long SP, Marshall-Colon A and Zhu, XG 2015 Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161 56–66

    CAS  PubMed  Google Scholar 

  • Lucker B and Kramer DM 2013 Regulation of cyclic electron flow in Chlamydomonas reinhardtii under fluctuating carbon availability. Photosynth. Res. 117 449–459

    CAS  PubMed  Google Scholar 

  • Ma Y, Pollock SV, Xiao Y, Cunnusamy K and Moroney JV 2011 Identification of a novel gene, CIA6, required for normal pyrenoid formation in Chlamydomonas reinhardtii. Plant Physiol.156 884–896

    CAS  PubMed  PubMed Central  Google Scholar 

  • Machingura MC, Bajsa-Hirschel J, Laborde SM, Schwartzenburg JB, Mukherjee B, Mukherjee A and Moroney JV 2017 Identification and characterization of a solute carrier, CIA8, involved in inorganic carbon acclimation in Chlamydomonas reinhardtii. J Exp Bot. 68 3879–3890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mackinder LCM 2017 The Chlamydomonas CO2-concentrating mechanism and its potential for engineering photosynthesis in plants. New Phytol. 217 54–61

    PubMed  Google Scholar 

  • Mackinder LCM, Chen C, Leib RD, Patena W, Blum SR, Rodman M, Ramundo S, Adams CM, Jonikas MC 2017 A spatial interactome reveals the protein organization of the algal CO2-concentrating mechanism. Cell 171 133–147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mackinder LCM, Meyer MT, Mettler-Altmann T, Chen VK, Mitchell MC, Caspari O and Jonikas M C 2016 A repeat protein links RuBisCo to form the eukaryotic carbon-concentrating organelle. Proc. Natl. Acad. Sci. USA 113 5958–5963

    CAS  PubMed  PubMed Central  Google Scholar 

  • Markelova AG, Sinetova MP, Kupriyanova EV and Pronina NA 2009 Distribution and functional role of carbonic anhydrase Cah3 associated with thylakoid membranes in the chloroplast and pyrenoid of Chlamydomonas reinhardtii. Russian J. Plant Physiol. 56 761–768

    CAS  Google Scholar 

  • Matsuda Y, Hopkinson BM, Nakajima K, Dupont CL and Tsuji Y 2017 Mechanisms of carbon dioxide acquisition and CO2 sensing in marine diatoms: a gateway to carbon metabolism. Philos. TR Soc. B: Biol. Sci. 372 20160403

    Google Scholar 

  • Meyer MT, Genkov T, Skepper JN, Jouhet J, Mitchell MC, Spreitzer RJ and Griffiths H 2012 RuBisCosmall-subunit helices control pyrenoid formation in Chlamydomonas. Proc. Natl. Acad. Sci. USA 10919474–19479

  • Meyer MT, Whittaker C and Griffiths H 2017 The algal pyrenoid: key unanswered questions. J. Exp. Bot. 68 3739–3749

    CAS  PubMed  Google Scholar 

  • Mitchell MC, Metodieva G, Metodiev MV, Griffiths H and Meyer MT 2017 Pyrenoid loss impairs carbon-concentrating mechanism induction and alters primary metabolism in Chlamydomonas reinhardtii. J. Exp. Bot. 68 3891–3902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell MC, Meyer MT and Griffiths H 2014 Dynamics of carbon-concentrating mechanism induction and protein relocalization during the dark-to-light transition in synchronized Chlamydomonas reinhardtii. Plant Physiol. 166 1073–1082

    PubMed  PubMed Central  Google Scholar 

  • Mitra M, Lato SM, Ynalvez RA, Xiao Y and Moroney JV 2004 Identification of a new chloroplast carbonic anhydrase in Chlamydomonas reinhardtii. Plant physiol. 135 173–82

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miura K, Yamano T, Yoshioka S,Tsutomu Y, Yoshihiro K, Taniguchi F, Asamizu E, Nakamura Y, Katsuyuki T, Yamato, Kanji OK and Fukuzawa H 2004 Expression profiling- based identification of CO2 responsive genes regulated by CCM1 controlling a carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol. 135 1595–1607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mora Salguero DA, Fernandez-Nino M, Serrano-Bermudez LM, Paez Melo DO, Winck FV, C Caldana and Barrios AFG 2018 Development of a Chlamydomonas reinhardtii metabolic network dynamic model to describe distinct phenotypes occurring at different CO2 levels. Peer J. 6e 5528

  • Moroney JV, Ma Y, Frey WD, Fusilier KA, Pham TT, Simms TA and Mukherjee B 2011 The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles. Photosynth. Res. 109 133–149

    CAS  PubMed  Google Scholar 

  • Mukherjee A, Lau CS, Walker CE, Rai AK, Prejean CI, Yates G, Thomas EM, Spencer GL, David JV, Mackinder LCM and Moroney JV 2019 Thylakoid localized bestrophin-like proteins are essential for the CO2 concentrating mechanism of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 116 16915–16920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nolke G, Barsoum M, Houdelet M, Arcalís E, Kreuzaler F, Fischer R and Schillberg S 2019 The integration of algal carbon concentration mechanism components into tobacco chloroplasts increases photosynthetic efficiency and biomass. Biotechnol. J. 14 1800170

    Google Scholar 

  • Occhialini A, Lin MT, Andralojc PJ, Hanson MR and Parry, M A J 2016 Transgenic tobacco plants with improved cyanobacterial RuBisCo expression but no extra assembly factors grow at near wild-type rates if provided with elevated CO2. Plant J. 85 148–160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnishi N, Mukherjee B, Tsujikawa T, Yanase M, Nakano H, Moroney JV and Fukuzawa H 2010 Expression of a low CO2-inducible protein, LCI1, increases inorganic carbon uptake in the green alga,Chlamydomonas reinhardtii. Plant Cell 22 3105–3117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohno N, Inoue T, Yamashiki R, Nakajima K, Kitahara Y, Ishibashi M and Matsuda Y 2012 CO2/cAMP-responsive cis-elements targeted by a transcription factor with CREB/ATF-like basic zipper domain in the marine diatom Phaeodactylum tricornutum. Plant Physiol. 158 499–513

    CAS  PubMed  Google Scholar 

  • Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015 Redesigning photosynthesis to sustainably meet global food and bioenergy demand. The integration of algal carbon concentration mechanism components into tobacco chloropl 112 8529–8536

    CAS  Google Scholar 

  • Peng L, Zhang Z, Lan CQ, Basak A, Bond N, Ding X and Du J 2016 Alleviation of oxygen stress on Neochloris oleoabundans: effects of bicarbonate and pH. J. Appl. Phycol. 29 143–152

    Google Scholar 

  • Pengelly JJL, Förster B, Von Caemmerer S, Badger MR, Price GD and Whitney SM 2014 Transplastomic integration of a cyanobacterial bicarbonate transporter into tobacco chloroplasts. J. Exp. Bot.65 3071–3080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petroutsos D, Busch A, Janben I, Trompelt K, Bergner SV, Weinl S and Hippler M 2011 The chloroplast calcium sensor CAS is required for photoacclimation in Chlamydomonas reinhardtii. Plant Cell 23 2950–2963

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polukhina I, Fristedt R, Dinc E, Cardol P and Croce R 2016 Carbon supply and photoacclimation cross talk in the green alga Chlamydomonas reinhardtii. Plant Physiol. 172 1494–1505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rae BD, Long BM, Forster B, Nguyen ND, Velanis CN, Atkinson N and McCormick AJ 2017 Progress and challenges of engineering a biophysical CO2-concentrating mechanism into higher plants. J. Exp. Bot. 68 3717–3737

    CAS  PubMed  Google Scholar 

  • Raven JA & Beardall J 2015 The ins and outs of CO2. J. Exp. Bot. 67 1–13

    PubMed  PubMed Central  Google Scholar 

  • Raven JA, Beardall J and Sanchez-Baracaldo P 2017 The possible evolution and future of CO2-concentrating mechanisms. J. Exp. Bot.68 3701–3716

    CAS  PubMed  Google Scholar 

  • Renberg L, Johansson AI, Shutova T, Stenlund H, Aksmann A, Raven JA, Gardestrom P, Moritz Tand Samuelsson G 2010 A metabolomic approach to study major metabolite changes during acclimation to limiting CO2 in Chlamydomonas reinhardtii. Plant Physiol. 154 187–196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan CJ, Shao HB and Teixeira da Silva JA 2012 A critical review on the improvement of photosynthetic carbon assimilation in C3 plants using genetic engineering. Crit. Rev. Biotechnol. 32 1–21

    CAS  PubMed  Google Scholar 

  • Ruiz C, Pla M, Company N, Riudavets J and Nadal A 2016 High CO2 concentration as an inductor agent to drive production of recombinant phytotoxic antimicrobial peptides in plant biofactories. Plant Mol. Biol. 90 329–343

    CAS  PubMed  Google Scholar 

  • Salome PA and Merchant SS 2019 A series of fortunate events: Introducing Chlamydomonas as a reference organism. Plant Cell 31 1682–1707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sathasivam R, Radhakrishnan R, Hashem A and Abd Allah EF 2019 Microalgae metabolites: A rich source for food and medicine. Saudi J Biol Sci. 26 709–722

  • Shutova T, Kenneweg H, Buchta J and Nikitina J 2008 The Photosystem II-associated Cah3 in Chlamydomonas enhance the O2 evolution rate by proton removal. EMBO J. 27 782–9

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simkin AJ, Mc Ausland L, Headland LR, Lawson T and Raines CA 2015 Multigene manipulation of photosynthetic carbon assimilation increases CO2 fixation and biomass yield in tobacco. J. Exp. Bot. 66 4075–4090

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sinetova MA, Kupriyanova EV, Markelova AG, Allakhverdiev SI and Pronina NA 2012 Identification and functional role of the carbonic anhydrase Cah3 in thylakoid membranes of pyrenoid of Chlamydomonas reinhardtii. BBA–Bioenergetics 1817 1248–1255

  • Solovchenko A and Khozin-Goldberg I 2013 High-CO2 tolerance in microalgae: possible mechanisms and implications for biotechnology and bioremediation. Biotechnol. Lett. 35 1745–1752

    CAS  PubMed  Google Scholar 

  • Soupene E, Inwood W and Kustu S 2004 Lack of the Rhesus protein Rh1 impairs growth of the green alga Chlamydomonas reinhardtii at high CO2Proc. Natl. Acad. Sci. USA 101 7787–7792

  • Spalding MH 2009 The CO2-concentrating mechanism and carbon assimilation. In the Chlamydomonas Sourcebook: Organellar and Metabolic Processes 2nd edition Edited by EH Harris and DB Stern Academic publishers 257–301

  • Sultemeyer DF, Fock HP and Canvin DT 1991 Active uptake of inorganic carbon by Chlamydomonas reinhardtii: evidence for simultaneous transport of HCO3 and CO2 and characterization of active CO2 transport. Can. J. Bot. 69 995–1002

    Google Scholar 

  • Sultemeyer DF, Millar AG, Espie GS, Fock HP and Canvin DT 1989 Active CO2 transport by the green alga Chlamydomonas reinhardtii. Plant Physiol. 89 1213–1219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka A, Ohno N, Nakajima K and Matsuda Y 2016 Light and CO2/cAMP signal cross talk on the promoter elements of chloroplastic β-carbonic anhydrase genes in the marine diatom Phaeodactylum tricornutum. Plant Physiol. 170 1105–1116

    CAS  PubMed  Google Scholar 

  • Terentyev VV, Shukshina AK and Shitov AV 2019 Carbonic anhydrase CAH3 supports the activity of photosystem II under increased pH. BBA - Bioenergetics 1860 582–590

    CAS  PubMed  Google Scholar 

  • Tirumani S, Gothandam KMand Rao BJ 2018 Coordination between photorespiration and carbon concentrating mechanism in Chlamydomonas reinhardtii: transcript and protein changes during light-dark diurnal cycles and mixotrophy conditions. Protoplasma 256 117–130

    PubMed  Google Scholar 

  • Tirumani S, Kokkanti M, Chaudhari V, Shukla M and Rao B J 2014 Regulation of CCM genes in Chlamydomonas reinhardtii during conditions of light–dark cycles in synchronous cultures. Plant Mol. Biol. 85 277–286

    CAS  PubMed  Google Scholar 

  • Toyokawa C, Yamano T andFukuzawa H 2020 Pyrenoid starch sheath is required for LCIB localization and the CO2-concentrating mechanism in green algae. Plant Physiol. 182 1883–1893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tredici MR 2010 Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1 143–162

    CAS  Google Scholar 

  • Tresguerres M, Buck J and Levin LR 2010 Physiological carbon dioxide, bicarbonate, and pH sensing. Pflüg. Arch. Eur. J Physiol. 460 953–964

    CAS  Google Scholar 

  • Ueno Y, Shimakawa G, Miyake C and Akimoto S 2018 Light-harvesting strategy during CO2-dependent photosynthesis in the green alga Chlamydomonas reinhardtii. J. Phys. Chem. Lett. 9 1028–1033

    CAS  PubMed  Google Scholar 

  • Vance P and Spalding MH 2005 Growth, photosynthesis, and gene expression in Chlamydomonas over a range of CO2 concentrations and CO2/O2 ratios: CO2 regulates multiple acclimation states. Can. J. Bot. 83 796–809

    CAS  Google Scholar 

  • Villarejo A 2002 A photosystem II-associated carbonic anhydrase regulates the efficiency of photosynthetic oxygen evolution. EMBO J. 21 1930–1938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villarejo A, Martinez F, Pino Plumed M and Ramazanov Z 1996 The induction of the CO2 concentrating mechanism in a starch-less mutant of Chlamydomonas reinhardtii. Physiol Plant. 98 798–802

    CAS  Google Scholar 

  • Wang H, Yan X, Aigner H, Bracher A, Nguyen ND, HeeWY, Long BM, Price GD, Hartl FU and Hayer-Hartl M 2019 RuBisCo condensate formation by CcmM in β-carboxysome biogenesis. Nature 566 131–135

    CAS  PubMed  Google Scholar 

  • Wang L, Yamano T, Kajikawa M, Hirono M and Fukuzawa H 2014a Isolation and characterization of novel high-CO2-requiring mutants of Chlamydomonas reinhardtii. Photosynth. Res. 121 175–184

    CAS  PubMed  Google Scholar 

  • Wang L, Yamano T, Takane S, Niikawa Y, Toyokawa C, Ozawa S and Fukuzawa H 2016 Chloroplast-mediated regulation of CO2-concentrating mechanism by Ca2+-binding protein CAS in the green alga Chlamydomonas reinhardtii. Proc. Natil. Acad. Sci. USA 113 12586–12591

    CAS  Google Scholar 

  • Wang Y, Huang Y, Wang J, Cheng C, Huang W, Lu P, Xu YN, Wang P, Yan N and Shi Y 2009 Structure of the formate transporter FocA reveals a pentameric aquaporin-like channel. Nature 462 467–472

    CAS  PubMed  Google Scholar 

  • Wang Y and Spalding MH 2014 Acclimation to very low CO2: contribution of limiting CO2 inducible proteins, LCIB and LCIA, to inorganic carbon uptake in Chlamydomonas reinhardtii. Plant Physiol.166 2040–2050

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Stessman DJ and Spalding MH 2015 The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2: how Chlamydomonas works against the gradient. Plant J. 82 429–448

    PubMed  Google Scholar 

  • Wilson RH, Thieulin-Pardo G, Hartl FU and Hayer-Hartl M 2019 Improved recombinant expression and purification of functional plant RuBisCo. FEBS Lett. 593 611–621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winck VF, Arvidsson S, Riaño-Pachón DM, Hempel S, Koseska A, Nikoloski Zand Mueller Roeber B 2013 Genome-wide identification of regulatory elements and reconstruction of gene regulatory networks of the green alga Chlamydomonas reinhardtii under carbon deprivation. PLoS one 8 e79909

  • Wunder T, Cheng SL, Lai SK, Li HY and Mueller-Cajar O 2018 The phase separation underlying the pyrenoid-based microalgal RuBisCo supercharger. Nat. Commun. 9 5076

    PubMed  PubMed Central  Google Scholar 

  • Wunder T, Oh ZG and Mueller Cajar O 2019 CO2 fixing liquid droplets: towards a dissection of the microalgal pyrenoid. Traffic. 20 380–389

    CAS  PubMed  Google Scholar 

  • Xiang Y, Zhang J and Donald P 2001 The Cia5 gene controls formation of the carbon concentrating mechanism in Chlamydomonas reinhardtii. Proc. Natil. Acad. Sci. USA 98 5341–5346

    CAS  Google Scholar 

  • Yamano T, Miura K and Fukuzawa H 2008 Expression analysis of genes associated with the induction of the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol. 147 340–354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamano T, Sato E, Iguchi H, Fukuda Y and Fukuzawa H 2015 Characterization of cooperative bicarbonate uptake into chloroplast stroma in the green alga Chlamydomonas reinhardtii. Proc. Natil. Acad. Sci. USA 112 7315–7320

    CAS  Google Scholar 

  • Yamano T, Toyokawa C and Fukuzawa H 2018 High-resolution sub organellar localization of Ca2+-binding protein CAS, a novel regulator of CO2-concentrating mechanism. Protoplasma 255 1015–1022

    CAS  PubMed  Google Scholar 

  • Yamano T, Tsujikawa T, Hatano K, Ozawa S, Takahashi Y and Fukuzawa H 2010 Light and low CO2 dependent LCIB/LCIC complex localization in the chloroplast supports the carbon concentrating mechanism in Chlamydomonas reinhardtiiPlant Cell Physiol51 1453–1468

    CAS  PubMed  Google Scholar 

  • Yang S M, Chang CY, Yanagisawa M, Park I, Tseng TH and Ku, MSB 2008 Transgenic rice expressing cyanobacterial bicarbonate transporter exhibited enhanced photosynthesis, growth and grain yield; in Photosynthesis. Energy from the Sun (Eds.) JF Allen,E Gantt, JH Golbeckand BOsmond (Dordrecht, Springer) pp 1243–1246

  • Yoshioka S, Taniguchi F, Miura K, Inoue T, Yamano T and Fukuzawa H 2004 The novel Myb transcription factor LCR1 regulates the CO2-responsive gene Cah1, encoding a periplasmic carbonic anhydrase in Chlamydomonas reinhardtii. Plant Cell 16 1466–1477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeiler KG, Heacox DA, Toon ST, Kadam KL and Brown LM 1995 The use of microalgae for assimilation and utilization of carbon dioxide from fossil fuel-fired power plant flue gas. Energy Convers. Manag. 36 707–712

    CAS  Google Scholar 

  • Zhan Y, Marchand CH, Maes A, Mauries A, Sun Y, Dhaliwal JS and Zerges W 2018 Pyrenoid functions revealed by proteomics in Chlamydomonas reinhardtii. PLoS One 13 e0185039

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Wang N, Miao Y, Hauser F, McCammon JA, Rappel WJ and Schroeder JI 2018 Identification of SLAC1 anion channel residues required for CO2/bicarbonate sensing and regulation of stomatal movements. Proc. Natil. Acad. Sci. USA 115 11129–11137

    CAS  Google Scholar 

  • Zheng YL, Yuan C, Liu JH, Hu GR, and Li FL 2014 Lipid production by a CO2-tolerant green microalgae Chlorella sp. MRA1. J. Microbiol. Biotechnol. 24 683–689

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the funding from CSIR (No. 38 (1429)/17-EMRII), and INSA, New Delhi, to KM. KM also acknowledges Dr M Raghuram, head of the Botany and Microbiology Department, ANU, for providing administrative support. We also thank the Department of Science and Technology, New Delhi, for the DST-FIST programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kokkanti Mallikarjuna.

Additional information

This article is part of the Topical Collection: Genetic Intervention in Plants: Mechanisms and Benefits.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallikarjuna, K., Narendra, K., Ragalatha, R. et al. Elucidation and genetic intervention of CO2 concentration mechanism in Chlamydomonas reinhardtii for increased plant primary productivity. J Biosci 45, 115 (2020). https://doi.org/10.1007/s12038-020-00080-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12038-020-00080-z

Keywords

Navigation