Skip to main content
Log in

Cholesterol-lowering drug, in combination with chromium chloride, induces early apoptotic signals in intracellular L. donovani amastigotes, leading to death

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Leishmania establishes a successful parasitism by evading both oxidative and non-oxidative killing pathways, and its drug resistance against the currently available therapeutics demands for a safe and cheap drug. Since the parasite synthesizes ergosterol instead of cholesterol, using the same biochemical pathway and enzymes, an inhibitor of HMG-CoA-Reductase, Lovastatin, has been tried for its anti-Leishmanial effect. Lovastatin, being an inhibitor of HMG-CoA-Reductase, inhibits infection by cholesterol depletion, while chromium chloride complexes, at their higher concentrations, are reported to exhibit cytotoxicity. In intracellular amastigotes, cytotoxicity has been checked by assessing various manifestation of cell death, viz. DNA fragmentation, AnnexinV-FITC binding and JC-1 fluorescence ratio. Release of hydrogen peroxide (HPO) and nitric oxide (NO) has been assessed in live cell. Lovastatin and CrCl3.6H2O in combination has appeared to be ineffective on promastigotes but has induced cytotoxic effect on the intracellular amastigotes through up-regulation of cellular signalling mechanisms. CrCl3.6H2O stimulates generation of NO, leading to reduction of the number of intracellular amastigote, while Lovastatin shows HPO-mediated killing of the same, keeping the host cell unaffected. This novel therapeutic approach, involving two known safe compounds in suboptimal doses, may resolve human visceral Leishmaniasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aditya Kumar G, Jafurulla M and Chattopadhyay A 2016a The membrane as the gatekeeper of infection: cholesterol in host–pathogen interaction. Chem. Phys. Lipids 199 179–185

    Article  PubMed  Google Scholar 

  • Aditya Kumar G, Roy S, Jafurulla M, Mandal C and Chattopadhyay A 2016b Statin-induced chronic cholesterol depletion inhibits Leishmania donovani infection: relevance of optimum host membrane cholesterol. Biochim. Biophys. Acta 1858 2088–2096

    Article  PubMed  Google Scholar 

  • Al-Mulla Hummadi YM, Al-Bashir NM and Najim RA 2005 The mechanism behind the antileishmanial effect of zinc sulphate. II. Effects on the enzymes of the parasites. Ann. Trop. Med. Parasitol. 99 131–139

    Article  CAS  Google Scholar 

  • Bagchi D, Stohs SJ, Downs BW, Bagchi M and Preuss HG 2002 Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology 180 5–22

    Article  CAS  PubMed  Google Scholar 

  • Balamurugan K, Rajaram R, Ramasami T and Narayanan S 2002 Chromium(III)-induced apoptosis of lymphocytes: death decision by ROS and Src-family tyrosine kinases. Free Radic. Biol. Med. 33 1622–1640

    Article  CAS  PubMed  Google Scholar 

  • Beck H-P 2002 Extraction and purification of plasmodium parasite DNA. Methods Mol. Med. 72 159–163

    CAS  Google Scholar 

  • Chakravarty J and Sundar S 2010 Drug resistance in leishmaniasis. J. Glob. Infect. Dis. 2 167–176

    Article  PubMed  PubMed Central  Google Scholar 

  • Crane FL 2001 Biochemical functions of coenzyme Q10. J. Am. Coll. Nutr. 20 591–598

    Article  CAS  PubMed  Google Scholar 

  • Croft SL, Sundar S and Fairlamb AH 2006 Drug resistance in leishmaniasis. Clin. Microbiol. Rev. 19 111–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delbosc S, Morena M, Djouad F, Ledoucen C, Descomps B and Cristol J-P 2002 Statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, are able to reduce superoxide anion production by NADPH oxidase in THP-1-derived monocytes. J. Cardiovasc. Pharmacol. 40 611–617

    Article  CAS  PubMed  Google Scholar 

  • Doeller JE, Isbell TS, Benavides G, Koenitzer J, Patel H, Patel RP, Lancaster JR, Darley-Usmar VM and Kraus DW 2005 Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues. Anal. Biochem. 341 40–51

    Article  CAS  PubMed  Google Scholar 

  • Ghosh AK, Bhattacharyya FK, Ghosh DK 1985 Leishmania donovani: amastigote inhibition and mode of action of berberine. Exp. Parasitol. 60, 404–413

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Pal C, Ray M, Maitra S, Mandal L and Bandyopadhyay S 2003 Dendritic cell-based immunotherapy combined with antimony-based chemotherapy cures established murine visceral leishmaniasis. J. Immunol. 170 5625–5629

    Article  CAS  Google Scholar 

  • Ghosh M, Mandal L, Maitra S, Rakshit S, Paul K, Bagchi J, Ganguly D, Pal C and Bandyopadhyay S. (2006) Leishmania donovani infection of human myeloid dendritic cells leads to a Th1 response in CD4+ T cells from healthy donors and patients with kala-azar. J. Infect. Dis. 194 294–301

    Article  CAS  Google Scholar 

  • Gimpl G 2010 Cholesterol-protein interaction: methods and cholesterol reporter molecules. Subcell. Biochem. 51 1–45

    Article  CAS  PubMed  Google Scholar 

  • Jayanarayan KG and Dey CS 2005 Altered tubulin dynamics, localization and post-translational modifications in sodium arsenite resistant Leishmania donovani in response to paclitaxel, trifluralin and a combination of both and induction of apoptosis-like cell death. Parasitology 131 215–230

    Article  CAS  PubMed  Google Scholar 

  • Kaur J, Dutta S, Chang K-P and Singh N 2013 A member of the Ras oncogene family, RAP1A, mediates antileishmanial activity of monastrol. J. Antimicrob. Chemother. 68 1071–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kettawan A, Takahashi T, Kongkachuichai R, Charoenkiatkul S, Kishi T and Okamoto T 2007 Protective effects of coenzyme Q(10) on decreased oxidative stress resistance induced by simvastatin. J. Clin. Biochem. Nutr. 40 194–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khoo’ SH, Bond J and Denning DW 1994 Administering amphotericin B—a practical approach. J. Antimicrob. Chemother. 33 203–213

    Article  CAS  PubMed  Google Scholar 

  • Levis AG and Majone F 1979 Cytotoxic and clastogenic effects of soluble chromium compounds on mammalian cell cultures. Br. J. Cancer 40 523–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao JK and Laufs U 2005 Pleiotropic effects of statins. Annu. Rev. Pharmacol. Toxicol. 45 89–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodge R, Diallo TO and Descoteaux A 2006 Leishmania donovani lipophosphoglycan blocks NADPH oxidase assembly at the phagosome membrane. Cell. Microbiol. 8 1922–1931

    Article  CAS  Google Scholar 

  • Ma JA, Chapman GV, Chen SL, Penny R and Breit SN 1987 Flow cytometry with crystal violet to detect intracytoplasmic fluorescence in viable human lymphocytes. Demonstration of antibody entering living cells. J. Immunol. Methods 104 195–200

    Article  CAS  PubMed  Google Scholar 

  • McDowell MA, Marovich M, Lira R, Braun M and Sacks D 2002 Leishmania priming of human dendritic cells for CD40 ligand-induced interleukin-12p70 secretion is strain and species dependent. Infect. Immun. 70 3994–4001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore EM and Lockwood DN 2010 Treatment of visceral leishmaniasis. J. Glob. Infect. Dis. 2 151–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee M, Basu Ball W and Das PK 2014 Leishmania donovani activates SREBP2 to modulate macrophage membrane cholesterol and mitochondrial oxidants for establishment of infection. Int. J. Biochem. Cell Biol. 55 196–208

    Article  CAS  Google Scholar 

  • Mukherjee S, Mukherjee B, Mukhopadhyay R, Naskar K, Sundar S, Dujardin JC, Das AK, Roy S, Clem A, Sundar S, et al. 2012 Imipramine is an orally active drug against both antimony sensitive and resistant Leishmania donovani clinical isolates in experimental infection. PLoS Negl. Trop. Dis. 6 e1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pucadyil TJ and Chattopadhyay A 2007 Cholesterol: a potential therapeutic target in Leishmania infection? Trends Parasitol. 23 49–53

    Article  CAS  PubMed  Google Scholar 

  • Reis LC, Ramos-Sanchez EM and Goto H 2013 The interactions and essential effects of intrinsic insulin-like growth factor-I on Leishmania (Leishmania) major growth within macrophages. Parasite Immunol. 35 239–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts CW, McLeod R, Rice DW, Ginger M, Chance ML and Goad LJ (2003) Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa. Mol. Biochem. Parasitol. 126 129–142

    Article  CAS  PubMed  Google Scholar 

  • Roy K, Mandloi S, Chakrabarti S and Roy S 2016 Cholesterol corrects altered conformation of MHC-II protein in Leishmania donovani infected macrophages: Implication in therapy. Biochimica et Biophysica Acta. 1858 2088–2096

  • Roychoudhury J and Ali N 2008 Sodium stibogluconate: therapeutic use in the management of leishmaniasis. Indian J. Biochem. Biophys. 45 16–22

    CAS  Google Scholar 

  • Sharma U and Singh S 2009 Immunobiology of leishmaniasis. Indian J. Exp. Biol. 47 412–423

    CAS  PubMed  Google Scholar 

  • Verma NK and Dey CS 2004 Possible mechanism of miltefosine-mediated death of Leishmania donovani. Antimicrob. Agents Chemother. 48 3010–3015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wortmann G, Zapor M, Ressner R, Fraser S, Hartzell J, Pierson J, Weintrob A and Magill A 2010 Lipsosomal amphotericin B for treatment of cutaneous leishmaniasis. Am. J. Trop. Med. Hyg. 83 1028–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr Santu Bandyopadhyay, Chief Scientist, Indian Institute of Chemical Biology, Jadavpur, Kolkata, for his support in FACS analysis. We also acknowledge Dr Nahid Ali, Ms Roma Sinha and Mr Anirban Manna, Indian Institute of Chemical Biology, Jadavpur, Kolkata, for their support and for providing L. donovani AG83-sensitive strain used in this study. We also acknowledge Department of Biotechnology (DBT) (Grant No. BT/PR15025/GBD/27/284/2010 (Order-I) dated 16.06.2011), India, for their financial support in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monidipa Ghosh.

Additional information

Corresponding editor: Amit Chattopadhyay

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2462 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A.K., Laha, B., Pandey, M. et al. Cholesterol-lowering drug, in combination with chromium chloride, induces early apoptotic signals in intracellular L. donovani amastigotes, leading to death. J Biosci 42, 427–438 (2017). https://doi.org/10.1007/s12038-017-9690-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-017-9690-9

Keywords

Navigation