Skip to main content
Log in

Protein–Protein interaction site prediction in Homo sapiens and E. coli using an interaction-affinity based membership function in fuzzy SVM

Journal of Biosciences Aims and scope Submit manuscript

Abstract

Protein–protein interaction (PPI) site prediction aids to ascertain the interface residues that participate in interaction processes. Fuzzy support vector machine (F-SVM) is proposed as an effective method to solve this problem, and we have shown that the performance of the classical SVM can be enhanced with the help of an interaction-affinity based fuzzy membership function. The performances of both SVM and F-SVM on the PPI databases of the Homo sapiens and E. coli organisms are evaluated and estimated the statistical significance of the developed method over classical SVM and other fuzzy membership-based SVM methods available in the literature. Our membership function uses the residue-level interaction affinity scores for each pair of positive and negative sequence fragments. The average AUC scores in the 10-fold cross-validation experiments are measured as 79.94% and 80.48% for the Homo sapiens and E. coli organisms respectively. On the independent test datasets, AUC scores are obtained as 76.59% and 80.17% respectively for the two organisms. In almost all cases, the developed F-SVM method improves the performances obtained by the corresponding classical SVM and the other classifiers, available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

References

  • Argos P 1988 An investigation of protein subunit and domain interfaces. Protein Eng. 2 101–113

    Article  CAS  PubMed  Google Scholar 

  • Arias AM 1989 Molecular biology of the cell. In B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and JD, Watson, Garland (eds), 1989 $46.95 (v+ 1187 pages) ISBN 0 8240 3695 6, 2nd edn. Elsevier Current Trends

  • Bandyopadhyay S, Maulik U and Wang JTL 2007 (Eds) Analysis of biological data. A Soft Computing Approach. World Scientific, Singapore

  • Basu S and Plewczynski D 2010 AMS 3.0: prediction of post-translational modifications. BMC Bioinforma 11 210

    Article  Google Scholar 

  • Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H, Shindyalov I and Bourne P 2000 The protein data bank. Nucleic Acids Res. 28 235–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bordner AJ and Abagyan R 2005 Statistical analysis and prediction of protein–protein interfaces. Proteins Struct. Funct. Bioinforma 60 353–366

  • Caragea C, Sinapov J, Honavar V and Dobbs D 2007 Assessing the performance of macromolecular sequence classifiers. Bioinformatics and Bioengineering, BIBE 2007. Proceedings of the 7th IEEE International Conference on pp 320–326

  • Chang C-C and Lin C-J 2011 LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST). 2 27

    Google Scholar 

  • Chatterjee P, Basu S, Kundu M, Nasipuri M and Plewczynski D 2011a PPI_SVM: prediction of protein-protein interactions using machine learning, do-main-domain affinities and frequency tables. Cell. Mol. Biol. Lett. 16 264–278

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee P, Basu S, Kundu M, Nasipuri M and Plewczynski D 2011b PSP_MCSVM: brainstorming consensus prediction of protein secondary structures using two-stage multiclass support vector machine. J. Mol. Model. 17 2191–2201

    Article  PubMed Central  PubMed  Google Scholar 

  • Chelliah V, Chen L, Blundell T and Lovell S 2004 Distinguishing structural and functional restraints in evolution inorder to identify interaction sites. J. Mol. Biol. 342 1487–1504

    Article  CAS  PubMed  Google Scholar 

  • Chen Y and Wang JZ 2003 Support vector learning for fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. 11 716–728

    Article  Google Scholar 

  • Chiang J-H and Hao P-Y 2004 Support vector learning mechanism for fuzzy rule-based modeling: a new approach. IEEE Trans. Fuzzy Syst. 12 1–12

    Article  Google Scholar 

  • Cortes C and Vapnik VN 1995 Support vector networks. Mach. Learn. 20 273–297

    Google Scholar 

  • Demšar J 2006 Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7 1–30

    Google Scholar 

  • Huang HP and Liu YH 2002 Fuzzy support vector machine for pattern recognition and data mining. Int. J. Fuzzy Syst. 4 826–835

    Google Scholar 

  • Inoue T and Abe S 2001 Fuzzy support vector machines for pattern classification. Proc. IJCNN’01. 2 1449–1454

    Google Scholar 

  • Ishibuchi H and Yamamoto T 2005 Rule weight specification in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. 13 428–435

    Article  Google Scholar 

  • Janin J, Miller S and Chothia C 1988 Surface, subunit interfaces and interior of oligomericproteins. J. Mol. Biol. 204 155–164

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Yi Z and Lv JC 2006 Fuzzy SVM with a new fuzzy membership function. Neural Comput. Applic. 15 268–276

    Article  Google Scholar 

  • Jones S and Thornton J 1995 Protein-protein interactions: a review of protein dimer structures. Prog. Biophys. Mol. Biol. 63 31–65

    Article  CAS  PubMed  Google Scholar 

  • Jones S and Thornton JM 1996 Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA 93 13–20

  • Jones S and Thornton JM 1997 Analysis of protein-protein interaction sites using surface patches. JMB. 272 121–132

    Article  CAS  Google Scholar 

  • Koike A and Takagi T 2004 Prediction of protein–protein interaction sites using support vector machines. Protein Eng. Des. Sel. 17 165–173

    Article  CAS  PubMed  Google Scholar 

  • Korn A and Burnett R 1991 Distribution and complementarity of hydropathy in multi-subunit proteins. Proteins Struct. Funct. Bioinforma 9 37–55

  • Krogan N, Cagney G, Yu H, Zhong G, et al. 2006 Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440 637–643

    Article  CAS  PubMed  Google Scholar 

  • Lin C-F and Wang S-D 2002 Fuzzy support vector machines. IEEE Trans. Neural Netw. 13 464–471

    Article  PubMed  Google Scholar 

  • Lo Conte L, Chothia C and Janin J 1999 The atomic structure of protein– protein recognition sites. J. Mol. Biol. 285 2177–2198

    Article  CAS  PubMed  Google Scholar 

  • Maulik U, Bandyopadhyay S and Wang JT 2011a Computational intelligence and pattern analysis in biology informatics, p 20

  • Maulik U, Bhattacharyya M, Mukhopadhyay A and Bandyopadhyay S 2011b Identifying the immunodeficiency gateway proteins in humans and their involvement in microrna regulation. Mol. BioSyst. 7 1842–1851

    Article  CAS  PubMed  Google Scholar 

  • Miller S 1989 The structure of interfaces between subunits of dimeric and tetrameric proteins. Protein Eng. 3 77–83

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay A, Maulik U and Bandyopadhyay S 2012 A novel biclustering approach to association rule mining for predicting HIV-1–human protein interactions. PLoS One 7 e32289

  • Plewczynski D 2010 Brainstorming: weighted voting prediction of inhibitors for protein targets. J. Mol. Model 17 2133–2141

  • Plewczynski D, Basu S and Saha I 2012 AMS 4.0: consensus prediction of post-translational modifications in protein sequences. Amino Acids 43 573–582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saha I, Maulik U, Bandyopadhyay S and Plewczynski D 2012 Fuzzy clustering of physicochemical and biochemical properties of amino acids. Amino Acids 43 583–594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU and Eisenberg D 2004 The database of interacting proteins: 2004 update. Nucleic Acids Res. 32 D449–D451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sengupta D, Maulik U and Bandyopadhyay S 2012 Weighted Markov chain based aggregation of biomolecule orderings. IEEE/ACM Trans. Comput. Biol. Bioinforma 9 924–933

  • Šikić M, Tomić S and Vlahoviček K 2009 Prediction of protein–protein interaction sites in sequences and 3D structures by random forests. PLoS Comput. Biol. 5 e1000278

    Article  PubMed Central  PubMed  Google Scholar 

  • Singh R, Park D, Xu J, Hosur R and Berger B 2010 Struct2Net: a web service to predict protein–protein interactions using a structure-based approach. Nucleic Acids Res. 38 W508–W515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sriwastava B, Basu S, Maulik U and Plewczynski D 2012 Prediction of E. coli protein-protein interaction sites using inter-residue distances and high-quality-index features. Information Systems Design and Intelligent Applications 2012. INDIA 837–844

  • Sriwastava BK, Basu S, Maulik U and Plewczynski D 2013 PPIcons: identification of protein-protein interaction sites in selected organisms. J. Mol. Model. 9 4059–4070

  • Sriwastava BK, Basu S and Maulik U 2013 Fuzzy SVM with a novel membership function for prediction of protein-protein interaction sites in Homo sapiens; In Pattern recognition and machine intelligence. Springer, Berlin Heidelberg 8251 668–673

  • Tang H and Qu L-S 2008 Fuzzy support vector machine with a new fuzzy membership function for pattern classification. In Machine Learning and Cybernetics, 2008 International Conference on IEEE. Kunming 2 768–773

  • Vapnik VN 1995 The nature of statistical learning theory (New York: Springer-Verlag)

    Book  Google Scholar 

  • Wei Y and Wu X 2012 A new fuzzy SVM based on the posterior probability weighting membership. J. Comput. 7 1385–1392

    Article  Google Scholar 

  • Zhou H-X and Shan Y 2001 Prediction of protein interaction sites from sequence profile and residue neighbor list. Proteins Struct. Funct. Genet. 44 336–343

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project is partially supported by the CMATER research laboratory of the Computer Science and Engineering Department, Jadavpur University, India, PURSE project and FASTTRACK grant (SR/FTP/ETA-04/2012) of DST, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Subhadip Basu or Ujjwal Maulik.

Additional information

[Sriwastava BK, Basu S and Maulik U 2015 Protein–Protein interaction site prediction in Homo sapiens and E. coli using an interaction-affinity based membership function in fuzzy SVM. J. Biosci.] DOI 10.1007/s12038-015-9564-y

Supplementary materials pertaining to this article are available on the Journal of Biosciences Website at http://www.ias.ac.in/jbiosci/oct2015/supp/Sriwastava.pdf

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 423 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sriwastava, B.K., Basu, S. & Maulik, U. Protein–Protein interaction site prediction in Homo sapiens and E. coli using an interaction-affinity based membership function in fuzzy SVM. J Biosci 40, 809–818 (2015). https://doi.org/10.1007/s12038-015-9564-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-015-9564-y

Keywords

Navigation