Skip to main content
Log in

Structural studies on Mycobacterium tuberculosis RecA: Molecular plasticity and interspecies variability

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Structures of crystals of Mycobacterium tuberculosis RecA, grown and analysed under different conditions, provide insights into hitherto underappreciated details of molecular structure and plasticity. In particular, they yield information on the invariant and variable features of the geometry of the P-loop, whose binding to ATP is central for all the biochemical activities of RecA. The strengths of interaction of the ligands with the P-loop reveal significant differences. This in turn affects the magnitude of the motion of the ‘switch’ residue, Gln195 in M. tuberculosis RecA, which triggers the transmission of ATP-mediated allosteric information to the DNA binding region. M. tuberculosis RecA is substantially rigid compared with its counterparts from M. smegmatis and E. coli, which exhibit concerted internal molecular mobility. The interspecies variability in the plasticity of the two mycobacterial proteins is particularly surprising as they have similar sequence and 3D structure. Details of the interactions of ligands with the protein, characterized in the structures reported here, could be useful for design of inhibitors against M. tuberculosis RecA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Arora A, Chandra NR, Das A, Gopal B, Mande SC, Prakash B, Ramachandran R, Sankaranarayanan R, et al. 2011 Structural biology of Mycobacterium tuberculosis proteins: the Indian efforts. Tuberculosis 91 456–468

    Article  CAS  PubMed  Google Scholar 

  • Bell CE 2005 Structure and mechanism of Escherichia coli RecA ATPase. Mol. Microbiol. 58 358–366

    Article  CAS  PubMed  Google Scholar 

  • Bell CE and Xing X 2004 Crystal structures of Escherichia coli RecA in a compressed helical filament. J. Mol. Biol. 342 1471–1485

    Article  PubMed  Google Scholar 

  • Brunger AT, Adams PD, Clore GM, Delano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski, et al. 1998 Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D54 905–921

    CAS  Google Scholar 

  • Chandran AV and Vijayan M 2013 Allosteric movements in eubacterial RecA. Biophys. Rev. 5 249–258

    Article  CAS  Google Scholar 

  • Chen Z, Yang H and Pavletich NP 2008 Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453 489–494

    Article  CAS  PubMed  Google Scholar 

  • Chetnani B, Das S, Kumar P, Surolia A and Vijayan M 2009 Mycobacterium tuberculosis pantothenate kinase: possible changes in location of ligands during enzyme action. Acta Crystallogr. D65 312–325

    Google Scholar 

  • Chetnani B, Kumar P, Surolia A and Vijayan M 2010 M. tuberculosis pantothenate kinase: dual substrate specificity and unusual changes in ligand locations. J. Mol. Biol. 400 171–185

    Article  CAS  PubMed  Google Scholar 

  • Cohen GH 1997 ALIGN: a program to superimpose protein coordinates, accounting for insertions and deletions. J. Appl. Crystallogr. 30 1160–1161

    Article  CAS  Google Scholar 

  • Collaborative Computational Project Number 4 1994 The CCP4 Suite: Programs for Protein Crystallography. Acta Crystallogr. D50 760–763

    Google Scholar 

  • Cox MM 2007 Motoring along with the bacterial RecA protein. Nat. Rev. Mol. Cell Biol. 8 127–138

    Article  CAS  PubMed  Google Scholar 

  • Datta S, Ganesh N, Chandra NR, Muniyappa K and Vijayan M 2003a Structural studies on MtRecA-nucleotide complexes: insights into DNA and nucleotide binding and the structural signature of NTP recognition. Proteins 50 474–485

    Article  CAS  PubMed  Google Scholar 

  • Datta S, Krishna R, Ganesh N, Chandra NR, Muniyappa K and Vijayan M 2003b Crystal structures of Mycobacterium smegmatis RecA and its nucleotide complexes. J. Bacteriol. 185 4280–4284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Datta S, Prabu MM, Vaze MB, Ganesh N, Chandra NR, Muniyappa M and Vijayan M 2000 Crystal structures of Mycobacterium tuberculosis RecA and its complex with ADP-AlF(4): implications for decreased ATPase activity and molecular aggregation. Nucleic Acids Res. 28 4964–4973

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DeLano WL 2002 The PyMOL Molecular Graphics System (San Carlos, California, USA: DeLano Scientific LLC)

    Google Scholar 

  • Dutreix M, Moreau PL, Bailone A, Galibert F, Battista JR, Walker GC and Devoret R 1989 New recA mutations that dissociate the various RecA protein activities in Escherichia coli provide evidence for an additional role for RecA protein in UV mutagenesis. J. Bacteriol. 171 2415–2423

    PubMed Central  CAS  PubMed  Google Scholar 

  • Egelman EH 1993 What do X-ray crystallographic and electron microscopic structural studies of the RecA protein tell us about recombination. Curr. Opin. Struct. Biol. 3 189–197

    Article  CAS  Google Scholar 

  • Egelman EH 2003 A tale of two polymers: New insights into helical filaments. Nat. Rev. Mol. Cell Biol. 4 621–630

    Article  CAS  PubMed  Google Scholar 

  • Egelman EH and Stasiak A 1993 Electron microscopy of RecA-DNA complexes. Micron 24 309–324

    Article  CAS  Google Scholar 

  • Emsley P, Lohkamp B, Scott WG and Cowtan K 2010 Features and development of Coot. Acta Crystallogr. D66 486–501

    Google Scholar 

  • Evans PR 2006 Scaling and assessment of data quality. Acta Crystallogr. D62 72–82

    CAS  Google Scholar 

  • Fu H, Le S, Chen H, Muniyappa K and Yan J 2013 Force and ATP hydrolysis dependent regulation of RecA nucleoprotein filament by single-stranded DNA binding protein. Nucleic Acids Res. 41 924–932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flory J, Tsang SS and Muniyappa K 1984 Isolation and visualization of active presynaptic filaments of recA protein and single-stranded DNA. Proc. Natl. Acad. Sci. 81 7026–7030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Georgescauld F, Moynié L, Habersetzer J and Dautant A 2014 Structure of Mycobacterium tuberculosis nucleoside diphosphate kinase R80N mutant in complex with citrate. Acta Crystallogr. F70 40–43

    Google Scholar 

  • Goyal A, Verma P, Anandhakrishnan M, Gokhale RS and Sankaranarayanan R 2012 Molecular basis of the functional divergence of fatty acyl-AMP ligase biosynthetic enzymes of Mycobacterium tuberculosis. J. Mol. Biol. 416 221–238

    Article  CAS  PubMed  Google Scholar 

  • Kaushal PS, Talawar RK, Krishna PD, Varshney U and Vijayan M 2008 Unique features of the structure and interactions of mycobacterial uracil-DNA glycosylase: structure of a complex of the Mycobacterium tuberculosis enzyme in comparison with those from other sources. Acta Crystallogr. D64 551–560

    Google Scholar 

  • Koradi R, Billeter M and Wüthrich K 1996 Molmol: A program for display and analysis of macromolecular structures. J. Mol. Graph. 14 51–55

    Article  CAS  PubMed  Google Scholar 

  • Krishna R, Manjunath GP, Kumar P, Surolia A, Chandra NR, Muniyappa K and Vijayan M 2006 Crystallographic identification of an ordered C-terminal domain and a second nucleotide-binding site in RecA: new insights into allostery. Nucleic Acids Res. 34 2186–2195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krishna R, Prabu JR, Manjunath GP, Datta S, Chandra NR, Muniyappa K and Vijayan M 2007 Snapshots of RecA protein involving movement of the C-domain and different conformations of the DNA-binding loops: crystallographic and comparative analysis of 11 structures of Mycobacterium smegmatis RecA. J. Mol. Biol. 367 1130–1144

    Article  CAS  PubMed  Google Scholar 

  • Kukshal V, Khanam T, Chopre D, Singh N, Sanyal S and Ramachandran R 2012 M. tuberculosis sliding β-clamp does not interact directly with the NAD+-dependent DNA ligase. PLoS One 7 e35702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar S, Ma B, Tsai CJ, Sinha N and Nussinov R 2000 Folding and binding cascades: dynamic landscapes and population shifts. Protein Sci. 9 10–19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar RA, Vaze MB, Chandra NR, Vijayan M and Muniyappa K 1996 Functional characterization of the precursor and spliced forms of RecA protein of Mycobacterium tuberculosis. Biochemistry 35 1793–1802

    Article  CAS  PubMed  Google Scholar 

  • Lange OF, Lakomek NA, Fares C, Schroder GF, Walter KF, Becker S, Meiler J, Grubmuller H, et al. 2008 Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320 1471–1475

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS and Thornton JM 1993 PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26 283–291

    Article  CAS  Google Scholar 

  • Leslie AGW and Powell HR 2007 Processing Diffraction Data with Mosflm. Evolving Methods Macromol. Crystallogr. 245 41–51

    Article  Google Scholar 

  • Lesterlin C, Ball G, Schermelleh L and Sherratt DJ 2014 RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature 506 249–253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McGrew DA and Knight KL 2003 Molecular design and functional organization of the RecA protein. Crit. Rev. Biochem. Mol. Biol. 38 385–432

    Article  CAS  PubMed  Google Scholar 

  • Murillo AC, Li HY, Alber T, Baker EN, Berger JM, Cherney LT, Cherney MM, Cho YS, et al. 2007 High throughput crystallography of TB drug targets. Infect. Disord. Drug Targets 7 127–139

    Article  CAS  PubMed  Google Scholar 

  • Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, et al. 2011 REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D67 355–367

    Google Scholar 

  • Nautiyal A, Patil NK and Muniyappa K 2014 Suramin is a potent and selective inhibitor of Mycobacterium tuberculosis RecA protein and the SOS response: RecA as a potential target for antibacterial drug discovery. J. Antimicrob. Chemother. 69 1834–1843

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Yu X, Shinohara A and Egelman EH 1993 Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science 259 1896–1899

    Article  CAS  PubMed  Google Scholar 

  • Patil KN, Singh P and Muniyappa K 2011 DNA-binding, coprotease and strand exchange activities of mycobacterial RecA proteins: Implications for functional diversity among RecA nucleoprotein filaments. Biochemistry 50 300–311

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini L, Yu DS, Lo T, Anand S, Lee M, Blundell TL and Venkitaraman AR 2002 Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature 420 287–293

    Article  CAS  PubMed  Google Scholar 

  • Phulera S and Mande SC 2013 The crystal structure of Mycobacterium tuberculosis NrdH at 0.87 Å suggests a possible mode of its activity. Biochemistry 52 4056–4065

    Article  CAS  PubMed  Google Scholar 

  • Prabu JR, Manjunath GP, Chandra NR, Muniyappa K and Vijayan M 2008 Functionally important movements in RecA molecules and filaments: studies involving mutation and environmental changes. Acta Crystallogr. D64 1146–1157

    Google Scholar 

  • Prabu JR, Thamotharan S, Khanduja JS, Chandra NR, Muniyappa K and Vijayan M 2009 Crystallographic and modelling studies on Mycobacterium tuberculosis RuvA Additional role of RuvB-binding domain and inter species variability. Biochim. Biophys. Acta 1794 1001–1009

    Article  CAS  PubMed  Google Scholar 

  • Prabu JR 2009 Structural studies on Mycobacterial RecA and RuvA PhD Thesis, Indian Institute of Science, Bangalore, India

  • Rajan R and Bell CE 2004 Crystal structure of RecA from Deinococcus radiodurans: insights into the structural basis of extreme radioresistance. J. Mol. Biol. 344 951–963

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan C, Dani VS and Ramasarma T 2002 A conformational analysis of Walker motif A [GXXXXGKT (S)] in nucleotide-binding and other proteins. Protein Eng. 15 783–798

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Saraswati R, Chatterji D and Vijayan M 2008 Structural studies on the second Mycobacterium smegmatis Dps: invariant and variable features of structure, assembly and function. J. Mol. Biol. 375 948–959

    Article  CAS  PubMed  Google Scholar 

  • Selvaraj M, Roy S, Singh NS, Sangeetha R, Varshney U and Vijayan M 2007 Structural plasticity and enzyme action: crystal structures of Mycobacterium tuberculosis peptidyl-tRNA hydrolase. J. Mol. Biol. 372 186–193

    Article  CAS  PubMed  Google Scholar 

  • Sexton JZ, Wigle TJ, He Q, Hughes MA, Smith GR, Singleton SF, Williams AL and Yeh LA 2010 Novel Inhibitors of E. coli RecA ATPase Activity. Curr. Chem. Genomics 4 34–42

    CAS  Google Scholar 

  • Sharma A, Sekar K and Vijayan M 2009 Structure, dynamics, and interactions of jacalin. Insights from molecular dynamics simulations examined in conjunction with results of X-ray studies. Proteins 77 760–777

    Article  CAS  PubMed  Google Scholar 

  • Sharma A and Vijayan M 2011 Influence of glycosidic linkage on the nature of carbohydrate binding in beta-prism I fold lectins: an X-ray and molecular dynamics investigation on banana lectin-carbohydrate complexes. Glycobiology 21 23–33

    Article  CAS  PubMed  Google Scholar 

  • Story RM, Weber IT and Steitz TA 1992 The structure of the E. coli recA protein monomer and polymer. Nature 355 318–325

    Article  CAS  PubMed  Google Scholar 

  • Story RM and Steitz TA 1992 Structure of the recA protein-ADP complex. Nature 355 374–376

    Article  CAS  PubMed  Google Scholar 

  • Vijayan M 2005 Structural biology of mycobacterial proteins: the Bangalore effort. Tuberculosis (Edinb) 85 357–366

    Article  CAS  Google Scholar 

  • Terwilliger TC, Park MS, Waldo GS, Berendsen J, Hung LW, Kim CY, Smith CV, Sachettini JC, et al. 2003 The TB structural genomics consortium: a resource for Mycobacterium tuberculosis biology. Tuberculosis 83 223–249

    Article  CAS  PubMed  Google Scholar 

  • Xing X and Bell CE 2004 Crystal structures of Escherichia coli RecA in complex with MgADP and MnAMP-PNP. Biochemistry 43 16142–16152

    Article  CAS  PubMed  Google Scholar 

  • Walker JE, Saraste M, Runswick MJ and Gay NJ 1982 Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1 945–951

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wigle TJ and Singleton SF 2007 Directed Molecular Screening for RecA ATPase Inhibitors. Bioorg. Med. Chem. Lett. 17 3249–3253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wenger J, Klinglmayr E, Froehlich C, Eibl C, Gimeno A, Hessenberger M, Puehringer S, Daumke O, et al. 2013 Functional mapping of human dynamin-1-like GTPase domain based on X-ray structure analyses. PLoS One 8 e71835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu Y, He Y, Moya IA, Qian X and Luo Y 2004 Crystal structure of archaeal recombinase RADA: a snapshot of its extended conformation. Mol. Cell 15 423–435

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Intensity data were collected at the Facility for Protein X-ray Structure Determination and Protein Design, supported by the Department of Science and Technology (DST), European Synchrotron Radiation Facility at Grenoble (access arranged by DBT) and Elettra synchrotron Light Source, Trieste (access arranged by DST). Part of the computations was carried out at the Interactive Graphics Facility, supported by the DBT. KM is the recipient of J.C. Bose National Fellowship from the DST. MV is the Albert Einstein Research Professor of the Indian National Science Academy. The work was supported by a research grant from DBT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Vijayan.

Additional information

Corresponding editor: B Jagadeeshwar Rao

[Chandran AV, Prabu JR, Nautiyal A, Patil KN, Muniyappa K and Vijayan M 2015 Structural studies on Mycobacterium tuberculosis RecA: Molecular plasticity and interspecies variability. J. Biosci. 40 1–18] DOI 10.1007/s12038-014-9497-x

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandran, A.V., Prabu, J.R., Nautiyal, A. et al. Structural studies on Mycobacterium tuberculosis RecA: Molecular plasticity and interspecies variability. J Biosci 40, 13–30 (2015). https://doi.org/10.1007/s12038-014-9497-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-014-9497-x

Keywords

Navigation