Skip to main content
Log in

Divergence of flowering genes in soybean

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Soybean genome sequences were blasted with Arabidopsis thaliana regulatory genes involved in photoperiod-dependent flowering. This approach enabled the identification of 118 genes involved in the flowering pathway. Two genome sequences of cultivated (Williams 82) and wild (IT182932) soybeans were employed to survey functional DNA variations in the flowering-related homologs. Forty genes exhibiting nonsynonymous substitutions between G. max and G. soja were catalogued. In addition, 22 genes were found to co-localize with QTLs for six traits including flowering time, first flower, pod maturity, beginning of pod, reproductive period, and seed filling period. Among the genes overlapping the QTL regions, two LHY/CCA1 genes, GI and SFR6 contained amino acid changes. The recently duplicated sequence regions of the soybean genome were used as additional criteria for the speculation of the putative function of the homologs. Two duplicated regions showed redundancy of both flowering-related genes and QTLs. ID 12398025, which contains the homeologous regions between chr 7 and chr 16, was redundant for the LHY/CCA1 and SPA1 homologs and the QTLs. Retaining of the CRY1 gene and the pod maturity QTLs were observed in the duplicated region of ID 23546507 on chr 4 and chr 6. Functional DNA variation of the LHY/CCA1 gene (Glyma07g05410) was present in a counterpart of the duplicated region on chr 7, while the gene (Glyma16g01980) present in the other portion of the duplicated region on chr 16 did not show a functional sequence change. The gene list catalogued in this study provides primary insight for understanding the regulation of flowering time and maturity in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Similar content being viewed by others

References

  • Adamczyk BJ, Lehti-Shiu MD and Fernandez DE 2007 The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. Plant J. 50 1007–1019

    Article  PubMed  CAS  Google Scholar 

  • Aukerman MJ and Sakai H 2003 Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15 2730–2741

    Article  PubMed  CAS  Google Scholar 

  • Axelsson T, Shavorskaya O and Lagercrantz U 2001 Multiple flowering time QTLs within several Brassica species could be the result of duplicated copies of one ancestral gene. Genome 44 856–864

    CAS  Google Scholar 

  • Bernard RL 1971 Two major genes for time of flowering and maturity in soybeans. Crop Sci. 11 242–244

    Article  Google Scholar 

  • Blackman BK, Rasmussen DA, Strasburg JL, Raduski AR, Burke JM, Knapp SJ, Michaels SD and Rieseberg LH 2011 Contributions of flowering time genes to sunflower domestication and improvement. Genetics 187 271–287

    Article  PubMed  CAS  Google Scholar 

  • Bonato ER and Vello NA 1999 E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet. Mol. Biol. 22 229–232

    Article  Google Scholar 

  • Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S and Coen E 1996 Control of inflorescence architecture in Antirrhinum. Nature 379 791–797

    Article  PubMed  CAS  Google Scholar 

  • Buzzel RI 1971 Inheritance of a soybean flowering response to fluorescent-daylength conditions. Can. J. Genet. Cytol. 13 703–707

    Google Scholar 

  • Buzzel RI and Voldeng HD 1980 Inheritance of insensitivity to long day length. Soybean Genet. Newsl. 7 26–29

    Google Scholar 

  • Caicedo AL, Richards C, Ehrenreich IM and Purugganan MD 2009 Complex rearrangements lead to novel chimeric gene fusion polymorphisms at the Arabidopsis thaliana MAF2–5 flowering time gene cluster. Mol. Biol. Evol. 26 699–711

    Article  PubMed  CAS  Google Scholar 

  • Castillejo C and Pelaz S 2008 The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering. Curr. Biol. 18 1338–1343

    Article  PubMed  CAS  Google Scholar 

  • Chen M and Ni M 2006 RED AND FAR-RED INSENSITIVE 2, a RING-domain zinc finger protein, mediates phytochrome-controlled seedling deetiolation responses. Plant Physiol. 140 457–465

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Chory J and Fankhauser C 2004 Light signal transduction in higher plants. Annu. Rev. Genet. 38 87–117

    Article  PubMed  CAS  Google Scholar 

  • Chiang GCK, Barua D, Kramer EM, Amasino RM and Donohue K 2009 Major flowering time gene, FLOWERING LOCUS C, regulates seed germination in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 106 11661–11666

    Article  PubMed  CAS  Google Scholar 

  • Cober ER and Voldeng HD 2001 A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Sci. 41 698–701

    Article  Google Scholar 

  • Cober ER, Molnar SJ, Charette M and Voldeng HD 2010 A new locus for early maturity in soybean. Crop Sci. 50 524–527

    Article  Google Scholar 

  • Cober ER, Tanner JW and Voldeng HD 1996a Genetic control of photoperiod response in early-maturing, near-isogenic soybean lines. Crop Sci. 36 601–605

    Article  Google Scholar 

  • Cober ER, Tanner JW and Voldeng HD 1996b Soybean photoperiod-sensitivity loci respond differentially to light quality. Crop Sci. 36 606–610

    Article  Google Scholar 

  • Cockram J, Jones H, Leigh FJ, O'Sullivan D, Powell W, Laurie DA and Greenland AJ 2007 Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J. Exp. Bot. 58 1231–1244

    Article  PubMed  CAS  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C and Coupland G 2007 FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316 1030–1033

    Article  PubMed  CAS  Google Scholar 

  • Ding Z, Doyle MR, Amasino RM and Davis SJ 2007 A complex genetic interaction between Arabidopsis thaliana TOC1 and CCA1/LHY in driving the circadian clock and in output regulation. Genetics 176 1501–1510

    Article  PubMed  CAS  Google Scholar 

  • Doebley JF, Gaut BS and Smith BD 2006 The molecular genetics of crop domestication. Cell 127 1309–1321

    Article  PubMed  CAS  Google Scholar 

  • Fornara F, Panigrahi KC, Gissot L, Sauerbrunn N, Ruhl M, Jarillo JA and Coupland G 2009 Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev. Cell 17 75–86

    Article  PubMed  CAS  Google Scholar 

  • Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Coupland G and Putterill J 1999 GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J. 18 4679–4688

    Article  PubMed  CAS  Google Scholar 

  • Fu C, Yang X O, Chen X, Chen W, Ma Y, Hu J and Li S 2009 OsEF3, a homologous gene of Arabidopsis ELF3, has pleiotropic effects in rice. Plant Biol. 11 751–757

    Article  PubMed  CAS  Google Scholar 

  • Fuller DQ 2007 Contrasting patterns in crop domestication and domestication rates: Recent archaeobotanical insights from the old world. Annal. Bot. 100 903–924

    Article  Google Scholar 

  • Grant D, Nelson RT, Cannon SB and Shoemaker RC 2010 SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res. 38 D843–846

    Article  PubMed  CAS  Google Scholar 

  • Greenup A, Peacock WJ, Dennis ES and Trevaskis B 2009 The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Ann. Bot. 103 1165–1172

    Article  PubMed  CAS  Google Scholar 

  • Hecht V, Knowles CL, Vander Schoor JK, Liew LC, Jones SE, Lambert MJ and Weller JL 2007 Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs. Plant Physiol. 144 648–661

    Article  PubMed  CAS  Google Scholar 

  • Hoecker U, Xu Y and Quail PH 1998 SPA1: a new genetic locus involved in phytochrome A-specific signal transduction. Plant Cell 10 19–33

    PubMed  CAS  Google Scholar 

  • Hudson KA 2010 The circadian clock-controlled transcriptome of developing soybean seeds. The Plant Genome 3 1–11

    Article  Google Scholar 

  • Hymowitz T 1970 On the domestication of the soybean. Economic Bot. 24 408–421

    Article  Google Scholar 

  • Hyten DL, Song QJ, Zhu YL, Choi IY, Nelson RL, Costa JM, Specht JE, Shoemaker RC and Cregan PB 2006 Impacts of genetic bottlenecks on soybean genome diversity. Proc. Natl. Acad. Sci. USA 103 16666–16671

    Article  PubMed  CAS  Google Scholar 

  • Imaizumi T, Schultz TF, Harmon FG, Ho LA and Kay SA 2005 FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309 293–297

    Article  PubMed  CAS  Google Scholar 

  • Itoh H, Nonoue Y, Yano M and Izawa T 2010 A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nature Genet. 42 635–638

    Article  PubMed  CAS  Google Scholar 

  • Izawa T, Mihara M, Suzuki Y, Gupta M, Itoh H, Nagano AJ, Motoyama R, Sawada Y, Yano M, Hirai MY, Makino A and Nagamura Y 2011 Os-GIGANTEA confers robust diurnal rhythms on the global transcriptome of rice in the field. Plant Cell 23 1741–1755

    Article  PubMed  CAS  Google Scholar 

  • Izawa T, Takahashi Y and Yano M 2003 Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr. Opin. Plant Biol. 6 113–120

    Article  PubMed  CAS  Google Scholar 

  • Jarillo JA and Pineiro M 2011 Timing is everything in plant development. The central role of floral repressors. Plant Sci. 181 364–378

    Article  PubMed  CAS  Google Scholar 

  • Jian B, Liu B, Bi YR, Hou WS, Wu CX and Han TF 2008 Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol. Biol. 9 59

    Article  PubMed  Google Scholar 

  • Jofuku KD, Omidyar PK, Gee Z and Okamuro JK 2005 Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc. Natl. Acad. Sci. USA 102 3117–3122

    Article  PubMed  CAS  Google Scholar 

  • Jung C and Muller AE 2009 Flowering time control and applications in plant breeding. Trends Plant Sci. 14 563–573

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Doyle MR, Sung S and Amasino RM 2009 Vernalization: winter and the timing of flowering in plants. Annu. Rev. Cell Dev. Biol. 25 277–299

    Article  PubMed  CAS  Google Scholar 

  • Kim KD, Shin JH, Van K, Kim DH and Lee SH 2009 Dynamic rearrangements determine genome organization and useful traits in soybean. Plant Physiol. 151 1066–1076

    Article  PubMed  CAS  Google Scholar 

  • Kim MY, Lee S, Van K, Kim TH, Jeong SC, Choi IY, Kim DS, Lee YS, et al. 2010 Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proc. Natl. Acad. Sci. USA 107 22032–22037

    Article  PubMed  CAS  Google Scholar 

  • Knight H, Thomson AJ and McWatters HG 2008 SENSITIVE TO FREEZING6 integrates cellular and environmental inputs to the plant circadian clock. Plant Physiol. 148 293–303

    Article  PubMed  CAS  Google Scholar 

  • Kole C, Quijada P, Michaels SD, Amasino RM and Osborn TC 2001 Evidence for homology of flowering-time genes VFR2 from Brassica rapa and FLC from Arabidopsis thaliana. Theor. Appl. Genet. 102 425–430

    Article  CAS  Google Scholar 

  • Kong F, Liu B, Xia Z, Sato S, Kim BM, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K and Abe J 2010 Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol. 154 1220–1231

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K and Abe J 2008 Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics 180 995–1007

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, Nagamatsu A, Arai M, et al. 2010 The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol. 153 198–210

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Zhou J, Bracha-Drori K, Yalovsky S, Ito T and Yu H 2007 Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development 134 1901–1910

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Wang HG, Gao PF, Xu JH, Xu TD, Wang JS, Wang BL, Lin CT and Fu YF 2009 Analysis of clock gene homologs using unifoliolates as target organs in soybean (Glycine max). J. Plant Physiol. 166 278–289

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Kim MY, Kang YJ, Van K, Lee YH, Srinives P, Yuan DL, Lee S-H 2011 QTL identification of flowering at three different latitudes reveals homeologous genomic regions that control flowering in soybean. Theor. Appl. Genet. 123 545–553

    Article  PubMed  Google Scholar 

  • Mathieu J, Yant LJ, Murdter F, Kuttner F and Schmid M 2009 Repression of flowering by the miR172 target SMZ. PLoS Biol. 7 e1000148

    Article  PubMed  Google Scholar 

  • McBlain BA and Bernard RL 1987 A new gene affecting the time of flowering and maturity in soybean. J. Hered. 78 160–162

    Google Scholar 

  • Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song HR, Carré IA and Couplang G 2002 LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev. Cell 2 629–641

    Article  PubMed  CAS  Google Scholar 

  • Ohto MA, Fischer RL, Goldberg RB, Nakamura K and Harada JJ 2005 Control of seed mass by APETALA2. Proc. Natl. Acad. Sci. USA 102 3123–3128

    Article  PubMed  CAS  Google Scholar 

  • Reed JW, Nagatani A, Elich TD, Fagan M and Chory J 1994 Phytochrome-A and Phytochrome-B have overlapping but distinct functions in Arabidopsis development. Plant Physiol. 104 1139–1149

    PubMed  CAS  Google Scholar 

  • Rosloski SM, Jali SS, Balasubramanian S, Weigel D and Grbic V 2010 Natural diversity in flowering responses of Arabidopsis thaliana caused by variation in a tandem gene array. Genetics 186 263–276

    Article  PubMed  CAS  Google Scholar 

  • Roux F, Touzet P, Cuguen J and Corre V L 2006 How to be early flowering: an evolutionary perspective. Trends Plant Sci. 11 375–381

    Article  PubMed  CAS  Google Scholar 

  • Sawa M, Nusinow DA, Kay SA and Imaizumi T 2007 FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318 261–265

    Article  PubMed  CAS  Google Scholar 

  • Schlueter JA, Dixon P, Granger C, Grant D, Clark L, Doyle JJ and Shoemaker RC 2004 Mining EST databases to resolve evolutionary events in major crop species. Genome 47 868–876

    Article  PubMed  CAS  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, et al. 2010 Genome sequence of the palaeopolyploid soybean. Nature 463 178–183

    Article  PubMed  CAS  Google Scholar 

  • Schranz ME, Quijada P, Sung SB, Lukens L, Amasino R and Osborn TC 2002 Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics 162 1457–1468

    PubMed  CAS  Google Scholar 

  • Shin JH, Van K, Kim DH, Kim KD, Jang YE, Choi BS, Kim MY and Lee SH 2008 The lipoxygenase gene family: a genomic fossil of shared polyploidy between Glycine max and Medicago truncatula. BMC Plant Biol. 8 133

    Article  PubMed  Google Scholar 

  • Shin JH and Lee S-H 2012 Molecular markers for the E2 and E3 genes controlling flowering and maturity in soybean. Mol. Breed. DOI 10.1007/s11032–012–9743–6

  • Shoemaker RC, Polzin K, Labate J, Specht J, Brummer EC, Olson T, Young N, Concibido V, et al. 1996 Genome duplication in soybean (Glycine subgenus soja). Genetics 144 329–338

    PubMed  CAS  Google Scholar 

  • Strayer C Oyama T, Schultz TF, Raman R, Somers DE, Más P, Panda S, Kreps JA and Kay SA 2000 Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 4 768–771

    Article  Google Scholar 

  • Takano M, Inagaki N, Xie XZ, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, et al. 2005 Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell 17 3311–3325

    Article  PubMed  CAS  Google Scholar 

  • Tamaki S, Matsuo S, Wong HL, Yokoi S and Shimamoto K 2007 Hd3a protein is a mobile flowering signal in rice. Science 316 1033–1036

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD and McCouch SR 1997 Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277 1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Tian Z, Wang X, Lee R, Li Y, Specht JE, Nelson RL, McClean PE, Qiu L and Ma J 2010 Artificial selection for determinate growth habit in soybean. Proc. Natl. Acad. Sci. USA 107 8563–8568

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Long Y, Wu BD, Liu J, Jiang CC, Shi L, Zhao JW, King GH and Meng JL 2009 The evolution of Brassica napus FLOWERING LOCUST paralogues in the context of inverted chromosomal duplication blocks. BMC Evol. Biol. 9 271–284

    Article  PubMed  Google Scholar 

  • Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S and Harada K 2009 Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182 1251–1262

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K and Harada K 2011 A map-based cloning strategy employing aresidual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188 395–407

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi A, Kobayashi Y, Goto K, Abe M and Araki T 2005 TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant Cell Physiol. 46 1175–1189

    Article  PubMed  CAS  Google Scholar 

  • Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu SB, Xing YZ and Zhang QF 2011 A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol. Plant 4 319–330

    Article  PubMed  CAS  Google Scholar 

  • Yant L, Mathieu J and Schmid M 2009 Just say no: floral repressors help Arabidopsis bide the time. Curr. Opin. Plant Biol. 12 580–586

    CAS  Google Scholar 

  • Yoo SK, Chung KS, Kim J, Lee JH, Hong SM, Yoo SJ, Yoo, SY, Lee JS and Ahn JH 2005 CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis. Plant Physiol. 39 770–778

    Article  Google Scholar 

  • Yoo SY, Kim Y, Kim SY, Lee JS and Ahn JH 2007 Control of flowering time and cold response by a NAC-domain protein in Arabidopsis. PLoS One 2 e642

    Article  PubMed  Google Scholar 

  • Zagotta MT, Hicks KA, Jacobs CI, Young JC, Hangarter RP and Meeks-Wagner DR 1996 The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering. Plant J. 10 691–702

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Li H, Li R, Hu R, Fan C, Chen F, Wang Z, Liu X, Fu Y and Lin C 2008 Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean. Proc. Natl. Acad. Sci. USA 105 21028–21033

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Next Generation BioGreen 21 Program (Code No. PJ00811701), Rural Development Administration, the Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk-Ha Lee.

Additional information

[Kim MY, Shin JH, Kang YJ, Shim SR and Lee S-H 2012 Divergence of flowering genes in soybean. J. Biosci. 37 1–14] DOI 10.1007/s12038-012-9252-0

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M.Y., Shin, J.H., Kang, Y.J. et al. Divergence of flowering genes in soybean. J Biosci 37, 857–870 (2012). https://doi.org/10.1007/s12038-012-9252-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-012-9252-0

Keywords

Navigation